
Video decoding: SDI interface implementation &
H.264/AVC bitstream decoder hardware architecture design and

implementation

Student Name: Mr. Vicheka PHOR

Department: CAMSI

School supervisor: Mr. Jacques JORDA

Advisor: Mr. Phillip WEISSFLOCH

Academic year: 2013-2014

05/09/2014

I. Objectives

II. SDI video interface implementation

II.1 Tri-Rate SDI PHY IP Pass-through sample design

II.2 SDI video interface implementation on LT-125 board

III. H.264/AVC bitstream decoder hardware architecture design and

implementation

III.1 H.264/AVC data stream structure

III.2 H.264/AVC bitstream decoder hardware architecture

III.3 FLC, Exp-Golomb, CAVLD decoding

III.4 Development progress

III.5 Tools used in the FPGA development flow design

III.6 Simulation and results

IV. Conclusion

2

OUTLINE

3

 SDI (Serial Digital Interface) video interface implementation:

 implementation of a Lattice tri-rate SDI PHY IP core on a Lattice FPGA

of the Enciris LT-125 board

 H.264/AVC bitstream decoder hardware architecture design and

implementation

I. Objectives

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

4

 Objective:

 3G/HD/SD SDI video input functionality on LT-125 board

 What was done:

 Use of Lattice tri-rate SDI PHY IP core

 Study of the Lattice tri-rate SDI PHY IP Pass-through demo

 Adding of several blocks: Sync-signals, sdi_422to444, and YCrCb to

RGB converter block

II. SDI video interface implementation

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

5

II.1 Tri-Rate SDI PHY IP Pass-through sample design

Number of registers: 834 / 71952 (1 %)

Number of SLICEs: 896 / 46008 (2 %)

Number of LUT4s: 1425 / 92016 (2 %)

Lattice FPGA_LFE3-95E-7FN1156CES

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

6

II.2 SDI video interface implementation

Lattice FPGA_LFE3-150EA-6FN1156C

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

7

III. H.264/AVC bitstream decoder hardware architecture

design and implementation

 Objective:

 develop a custom H.264 bitstream decoder for Enciris encoder

(high bit rate: 50 Mbit/s; 1080p30)

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

8

III.1 H.264/AVC data stream structure

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

9

III.2 H.264/AVC bitstream decoder hardware architecture

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

10

III.3 FLC, Exp-Golomb, CAVLD decoding

FLC (5 bits)

code_num Codeword

0 00000

1 00001

2 00010

3 00011

4 00100

5 00101

6 00110

7 00111

8 01000

... ...

CAVLC

Exp-Golomb

code_num Codeword

0 1

1 010

2 011

3 00100

4 00101

5 00110

6 00111

7 0001000

8 0001001

... ...

000010001110010111101101

16 coefficients  24 bits

000010001110010111101101

24 bits 16 coefficients
CAVLD

CAVLC/CAVCD :

different sets of variable-length

codes are chosen depending on

the statistics of recently-coded

coefficients

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

http://en.wikipedia.org/wiki/File:4x4CAVLC.svg
http://en.wikipedia.org/wiki/File:4x4CAVLC.svg
http://en.wikipedia.org/wiki/File:4x4CAVLC.svg
http://en.wikipedia.org/wiki/File:4x4CAVLC.svg

11

III.4 Development progress

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

12

III.5 Tools used in the FPGA development flow design

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

13

III.6 Simulation and results

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

14

Example of a video H.264 test file used in the simulations in ActiveHDL

III.6 Simulation and results

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

15

III.6 Simulation and results

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

16

Trace file created by

JM ITU-T C codeSimulation results for SPS layer in Active HDL

III.6 Simulation and results

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

17

Trace file created by

AtiveHDL
Trace file created by

JM ITU-T C code

III.6 Simulation and results

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

18

Number of registers: 468 / 115296 (0 %)

Number of SLICEs: 535 / 74520 (1 %)

Number of LUT4s: 852 / 149040 (1 %)

Lattice FPGA_LFE3-150EA-6FN1156C

Design can run on the maximum

frequency of 198.334 MHz with

the clock constraint of 150 MHz

III.6 Simulation and results

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

19

IV. Conclusion

 Accomplished the first task on the implementation of a Lattice tri-rate SDI

PHY IP core on the Enciris LT-125 board, provided an SMPTE 3G/HD/SD

SDI video input functionality on the board.

 Because of lacking time and because of the complexity of CAVLD

decoding, we can at the present manage to design the bitstream decoder

which can decode the SPS, PPS, Slice header, and Macroblock header layer

of the bitstream and which can run on the Lattice FPGA device - LFE3-

150EA-6FN1156C with the maximum frequency of 198.334 MHz where

the clock constraint is 150 MHz.

I II III IV

II.1 II.2 III.1 III.2 III.3 III.4 III.5 III.6

THANKS FOR YOUR ATTENTION

ANNEXE

SERDES

IPexpress - SERDES

IPexpress - Tri-rate SDI IP Core

YCbCr 422 vs 444 sample

422 444

 : Y

 : Cb

 : Cr

RGB to YCbCr

Flow of bitstream implementation

Introduction to FPGA Hardware Concepts (FPGA Module)

LUT

A lookup table (LUT) is used to transform the input data into a more desirable output format.

A lookup table (LUT) is a fast way to realize a complex function in digital logic. The address is

the function input, and the value at that address is the function output. The advantage is that

computing the function only takes a single memory lookup regardless of the complexity of the

function, so is very fast. The disadvantage is that it takes memory, especially if you need high

resolution for the function input.

For example, SIN is often implemented as a table lookup. If 10 bit angles are good enough

resolution, then the whole function can be implemented as a lookup table with 1024 entries.

(Actually in the case of SIN, only 1/4 cycle is stored then negated or indexed backwards

depending on the actual quadrant, but that is a aside specific to SIN).

The function input can also be a combination of different input variables with the result

expressed as a single integer. For example, a 4 x 4 bit multiply can be implemented as a lookup

table of 256 values. The 8-bit table address can be the two 4-bit input values concatenated.

The look-up-table (LUT)

• Building the PFU from the inside out…
– Nearly all FPGAs are based on a Look-Up-Table plus Register. Most are a LUT4. Aka

LUT4+REG.

– A 4-input LUT is just a 16-bit ROM, with 4 ‘address’ bits (ABCD) and a ‘data’ bit (F).

– By programming the ROM, any 4 input logic functions can be formed.

• Or it can be a simple ROM.

q0

q2

q1

q3
L

U
T

 M
e

m
o

ry

q4

q6

q5

q7

q8

q10

q9

q11

q12

q14

q13

q15

A B

C

D

F

(‘q’ values are programmable
SRAM memory bits that are
determined through the design
synthesis process)

Building ‘Slices’

Each Slice consists of:

 Two 4-Input LUTs
 Two Registers
 Arithmetic Logic circuits
 Circuitry to support simple

RAM mode

Slice Inputs:

 LUT Inputs: A, B, C, D
 Multi-Purpose Inputs: M
 Fast Carry Input: FCI
 Register Control Inputs:

CLK, CE, LSR

Slice Outputs:

 LUT Outputs: F
 Register Outputs: Q
 Wide Function Outputs:

OFX
 Fast Carry Output: FCO

Pairs of LUT+REG are grouped together with extra RAM/Ripple logic to form SLICEs.

H.264/AVC bitstream decoder hardware architecture

(0) nC

CAVLD decoding

Node-Leaf method algorithm

CAVLD decoding

(0) nC

Step (1) to (6)

Step (1) to (6)

File .264 Analyse

File .264 Analyse

Lattice FPGA LFE3-150EA-6FN1156C

Simulation results of block SPS in ActiveHDL

