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INTRODUCTION 

 

 

 

Nowadays, digital video is widely used in many applications in the way of creating or sharing for 

example the digital television broadcasting, internet video streaming, mobile video streaming, 

DVD video and video calling application. Therefore, effective video coding is an essential 

component of these applications and can make the difference between the success and failure of 

a business model. The video coding is the process of compressing and decompressing a digital 

video signal which is sent/received by various interfaces such as: SD-SDI, HD-SDI, 3G-SDI, 

DVI and HDMI. There are many methods or algorithms to compress and decompress digital 

video such as: VC1, H.262/MPEG-2, H.263/MPEG-4, and H.264/AVC algorithm. Among these 

video coding algorithms, H.264/AVC has huge significance to the broadcast, internet, consumer 

electronics, mobile and security industries application. Also, H.264/AVC is the latest in a series 

of standards published by the ITU and ISO. It describes and defines a method of coding video 

that can give better performance than any of the preceding standards. H.264/AVC makes it 

possible to compress video into a smaller space, which means that a compressed video clip takes 

up less transmission bandwidth and/or less storage space compared to older codecs. 

 

This master thesis is organized in two parts: 

 

 The first part which is composed of one chapter: Chapter I, will study about the SDI 

video interface by demonstrating the implementation of a Lattice tri-rate SDI PHY IP 

core on a Lattice FPGA of the Enciris LT-125 board in order to provide an SMPTE 

3G/HD/SD SDI video input functionality on the board without using any external chipset 

like the Gennum chipset which is used today on Enciris boards. 

 

- Chapter I: Implementation of Lattice tri-rate serial digital interface PHY IP core, 

will provide an overview of LatticeECP3 SERDES/PCS, an overview of Lattice 

tri-rate SDI PHY IP core, an overview of LT-125 Enciris board and the 

implementation of the tri-rate SDI PHY IP core on the Enciris LT-125 board. 

 

 The second part which contains two chapters: Chapter II and Chapter III, will describe 

about the H.264/AVC video decoding algorithm, particularly the H.264/AVC bitstream 

decoder hardware architecture design and implementation. 

 

- Chapter II: H.264/AVC bitstream decoder, will introduce an overview of video 

processing, an overview of H.264/AVC decoder, H.264/AVC parameters - profile 

and level, and H.264/AVC bitstream decoder. 

 

- Chapter III: H.264/AVC bitstream decoder hardware design in Verilog models, 

will cover the bitstream decoder hardware architecture, tools used in the FPGA 

development flow design, hardware implementation and results. 

 



 

 

PART I 



 

CHAPTER I                                     
“IMPLEMENTATION OF LATTICE TRI-RATE 

SERIAL DIGITAL INTERFACE IP CORE” 
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CHAPTER I 

“IMPLEMENTATION OF LATTICE TRI-RATE SERIAL DIGITAL 

INTERFACE PHY IP CORE” 

 

 

This chapter will demonstrate the implementation of a Lattice tri-rate SDI PHY IP core on a 

Lattice FPGA of the Enciris LT-125 board in order to provide an SMPTE 3G/HD/SD SDI video 

input functionality on the board without using any external chipset like the Gennum chipset 

which is used today on Enciris boards.  

 

Serial Digital Interface (SDI) is the most popular raw video connectivity standard used in 

television broadcast studios and video production facilities. With SDI, the high resolution video 

stream can be transmitted through a 75-Ohm coaxial cable for as long as several hundreds 

meters. 

 

In order to carry out this task, one needs to have the following knowledge: 

 

1. overview of LatticeECP3 SERDES/PCS 

2. overview of Lattice tri-rate SDI PHY IP core 

3. overview of LT-125 Enciris board 

4. implementation of the tri-rate SDI PHY IP core on the Enciris LT-125 board 

 

 

I.1 Overview of Lattice ECP3 SERDES/PCS 
 

The Lattice ECP3 FPGA family combines a high-performance FPGA fabric, high-performance 

I/Os and up to 16 channels of embedded SERDES with associated Physical Coding Sublayer 

(PCS) logic. The PCS logic can be configured to support numerous industry-standard, high-

speed serial data transfer protocols such as PCI Express, Gigabit Ethernet (1GbE and SGMII), 

XAUI plus multiple other standards, and user-specified generic 8b10b mode. 

 

Each channel of PCS logic contains dedicated transmit and receive SERDES for high-speed, 

full-duplex serial data transfer at data rates up to 3.2 Gbps. The PCS logic in each channel can be 

configured to support an array of popular data protocols including SD-SDI, HD-SDI and 3G-

SDI. 

 

Lattice ECP3 FPGA devices have from one to four quads of embedded SERDES/PCS logic. 

Each quad, in turn, supports four independent full-duplex data channels (RX and TX). A single 

channel can support a data link and each quad can support up to four channels with both RX and 

TX circuits, and an auxiliary channel that contains the TX PLL. The quad SERDES/PCS macro 

performs the serialization and de-serialization function for four lanes of data.  

 

Figure I.1 describes a simplified SERDES/PCS quad. 

 

More detailed information about LatticeECP3 SERDES/PCS is provided in reference [1].  
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Figure I.1: SERDES/PCS Quad Block Diagram 

 

 

I.2 Overview of Lattice tri-rate SDI PHY IP core 

 

The Lattice Tri-Rate SDI (Serial Digital Interface) PHY (Physical Layer) IP (Intellectual 

Property) core is a complete SDI PHY interface that connects to the high-speed SDI serial data 

on one side (through LatticeECP3™ SERDES) and the formatted parallel video data on the other 

side. For More detailed information of this IP core is provided in reference [2]. 

 

I.2.1 Lattice tri-rate SDI PHY IP core functional description 

 

Lattice’s tri-rate SDI PHY IP core consists of the following major functional blocks: SDI 

encoder/decoder, word alignment, CRC detection and checking, VPID (video payload identifier) 

insertion and extraction, and rate detection logic. A block diagram of the SDI IP core is given 

hereafter: 

 

 
Figure I.2: Tri-Rate SDI PHY IP Core, High-Level Functional Diagram 
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For a full description of each functional block, please refer to reference [2]. 

 

I.2.2 Lattice tri-rate SDI PHY IP core features and applications 

 

The Lattice tri-rate SDI PHY IP core features are: 

- Dynamic reception of multiple interface standards over the same physical cable: 270 

Mbps SD-SDI, 1.485 Gbps HD-SDI and 2.97 Gbps 3G-SDI interfaces 

- Automatic Rx (receive) rate detection and dynamic Tx (transmit) rate selection 

- Multiple SD source formats support: SMPTE 125M and SMPTE 267M  (13.5 MHz only) 

- Multiple HD source formats support: SMPTE 260M, SMPTE 274M, SMPTE 295M and 

SMPTE 296M 

- Support for 3G source formats, including 3G Level-B format: SMPTE 425M 

- Word alignment and timing reference sequence (TRS) detection 

- Field, vertical blanking (vblank) and horizontal blanking (hblank) timing signals 

generation 

- CRC computation, error checking and insertion for HD/3G 

- Line number (LN) decoding and encoding for HD/3G 

- Custom source format support for HD/3G  

- Video Payload Identifier (VPID) insertion and extraction for HD/3G  

- 10-bit parallel input/output support for SD  

- Soft-logic based low data-rate (LDR) serializer for SD transmission. 

 

This IP core enables faster development of applications for processing, storing, and bridging SDI 

video data. 

 

I.2.3 Tri-Rate SDI PHY IP pass-through demo 

 

Above all, it is necessary to test the Lattice SDI IP core feature by implementing the pass-

through demonstration scheme on the Lattice evaluation board. 

 

The Tri-Rate SDI PHY IP pass-through is demonstrated on the LatticeECP3 Video Protocol 

Board (VPB) which is an evaluation board that has the LFE3-95E-7FN1156C FPGA on it. The 

pass-through design is set up to receive video from a standard SDI source and re-transmit it 

through the IP to a SDI monitor. The pass-through scheme is shown in Figure I.3. 

 

 
 

Figure I.3: Pass-through scheme 
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The bitstream is uploaded on the FPGA device via JTAG connector. The JTAG connector is 

shown in Table I.1. The Pin 4, Pin 5, Pin 9 and Pin 10 of JTAG connector are left open in order 

to program the FPGA device. 

 

The Tri-Rate SDI PHY IP pass-through sample design is shown in Figure I.4. 

 

     Table I.1: JTAG connector 

 
 

 

 
Figure I.4: Tri-Rate SDI PHY IP pass-through sample design 

 

Notes: 

- The Tri-Rate SDI PHY IP pass-through demo uses two data channels of SERDES quad 

A: Channel0 and Channel1. Each data channel is configured for both RX and TX. 

However, the Channel0 is used for TX only and the Channel1 is used for RX. 

 

 

SDI Rx #1 

SDI Tx #0 

Power connector 

12 V DC 
JTAG connector  

LED indicator  
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- Without IP core license, the IP core will be operational for approximately four hours after 

initialization. After four hours, the device will stop working and it will be necessary to 

reprogram the device to re-enable the operation. 

- LED indicator displays the status of the SERDES and the video input. 

 

I.3 Overview of Enciris LT-125 board 

 

The LT-125 is a Lattice Semiconductor ECP3 FPGA based board for the evaluation of Enciris 

Technologies’ HD and SD video compression and decompression IP. The LT-125 is designed to 

demonstrate high performance H.264/AVC and VC-1 encoding and decoding in FPGA 

applications. This board captures and compresses video from digital HD video sources via DVI, 

3G/HD/SDI, HDMI connectors up to a video resolution of 1920x1080@60fps. Simultaneous 

dual channel video capture is also possible up to a video resolution of 1920x1080@30fps per 

channel. VC-1/SMPTE-421M is compressed at the advanced profile up to the level 3. H.264 is 

compressed at the baseline profile up to the level 4.1. An HDMI bypass output is also available. 

 

For more detailed information about this board, see references [3] and [4]. 

 

 
Figure I.5: LT-125 Overview 

 

 

Figure I.6: Top view of the LT-125 Board 
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I.3.1 LT-125 board’s functional description 

 

The LT-125 evaluation board includes video input and output connectors, a series of video input 

equalizers and a level shifter, a Lattice ECP3-150 FPGA (LFE3-150EA-6FN1156C), DDR 

memories, a Lattice XP2-8, a USB device controller, power management electronics and a USB 

device controller. The various elements and their interconnections are shown in Figure I.7: LT-

125 block diagram. 

 

 
Figure I.7: LT-125 block diagram 

 

When high speed video signal passes through a cable, signal degradation occurs. The LT-125 is 

equipped with input equalizers to restore video signal quality. ST Microelectronics TMDS 

equalizers ICs are used for DVI and HDMI inputs. These devices are designed to handle video at 

rates exceeding 1080p60 and also provide the necessary signal level shifting required by the 

FPGA. A Gennum 3G-SDI input equalizer is used to assure SMPTE signal integrity. The HDMI 

video output uses a ST Microelectronics TMDS level shifter as the FPGA output does not 

provide the required HDMI levels directly. 

 

The Lattice ECP3-150 FPGA has access to four Low Power Mobile DDRs. These are 32-bit 

DDRs with a capacity of 256 Mbps each that operate at up to 133 MHz using Enciris 

Technologies' proprietary video optimized DDR controller IP. 

 

A Lattice XP2 FPGA is used to transfer packets of data (e.g. compressed, uncompressed video, 

and parameters) to and from the USB device controller, and to provide the configuration 

bitstream of Lattice EP3-150 FPGA. The configuration bitstream is uploaded from the host PC 

via USB each time the board is used. This method allows for quick changes of configuration 

without requiring the use of the JTAG port and a permanent ECP3 configuration device (i.e. 

Flash memory). Typically, the Lattice ECP3-150 FPGA takes only a second or two to be 

reconfigured. 

 

I.3.2 LT-125 board’s features and applications 

 

The most significant features of LT-125 board are: 

- A platform for evaluating Enciris Technologies H.264 and VC-1 video compression and 

decompression IPs. 

- Uses a powerful Lattice ECP3 FPGA with 150 KLUTs for video processing. 
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- Equipped with an SMPTE 3G/HD/SD/SDI video input, a DVI single and dual link video 

input, an HDMI video input, and an HDMI video output. 

- FPGA configuration bitstream is uploaded directly via USB. JTAG is not required. 

- Includes a PC-based application for Windows XP/Vista/7 32/64bit and Linux and Mac 

OSX for quick evaluation and FPGA configuration bitstream. 

- A simple SDK that includes DirectShow is available for developing custom applications 

around the LT-125. 

 

LT125 is used for many applications such as:  

- HDTV capture and storage 

- Video medical systems 

- Video surveillance systems 

- Internet broadcasting and teleconferencing. 

 

 

I.3.3 DVI IN and HDMI OUT bypass demo of LT-125 board 

 

In this section, the DVI IN and HDMI OUT bypass configuration demonstration on the LT-125 

board is presented. Enciris uses three different software in the development flow of an FPGA: 

Altium Designer, Synplify Pro and Lattice Diamond. Moreover, a proprietary Python executable 

is used to generate and configuration the bitstream file. The flow of bitstream implementation on 

LT-125 Enciris board are shown in Figure I.8. 

 

 

 

 
 

Figure I.8: Flow of bitstream implementation 

 

 

Altium Designer  
 

Creation of the top level module Verilog file of the design. 

Synplify Pro 
 

Optimization of the Verilog code at a high level first, then synthesis of the RTL 

code into specific FPGA logic. 

Lattice Diamond 
 

Code translation, mapping and placing and routing. 

 

Python 

 
Creation of the bitstream file, and provide the configuration bitstream. 
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The DVI IN and HDMI OUT bypass demo is shown in Figure I.9. 

 

 

 
Figure I.9: DVI IN and HDMI OUT bypass demo 

 

 

I.4 Implementation of the tri-rate SDI PHY IP core on the Enciris LT-125 board 

 

In this section, the implementation of the SMPTE 3G/HD/SD/SDI video input functionality on 

the Enciris LT-125 board by using the Lattice tri-rate SDI PHY IP core will be described. The 

SDI scheme on the LT-125 board is shown in Figure I.10. 

 

The SERDES block performs de-serialization outputting the parallel data to the tri-rate SDI IP 

core. The IP core performs the rate detection in order to determine the SDI configuration of the 

incoming video stream. Rate detection is performed by sequentially scanning the input for 

different SDI standards: 270 Mbps SD-SDI, 1.485 Gbps HD-SDI and 2.97 Gbps 3G-SDI 

interfaces. If the incoming video stream matches one of the SDI standards, the SDI IP core 

receiver locks to this video stream by asserting the vid_active signal, and outputs the 20-bit SD 

parallel data with format 4:2:2 and other control signals such as field, vblank, hblank, frame 

format and video format. 

 

The Sync-signals block, SDI 422 to 444 block and YCrCb to RGB converter block are used to 

convert SD parallel data to HDMI format. 

 

The Cross-bar switch module multiplexes the video inputs to the various processing units. Note 

that at most two out of the three video inputs can be encoded in parallel while one input is 

bypassed. 

 

The HDMI Bypass module forwards the incoming video without any further processing to the 

HDMI output. 

 

DVI IN 

HDMI OUT 

Power connector 

1.5 V DC 

USB connector to 

host PC 

LED indicator  
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Figure I.10: SDI scheme on the LT-125 board 

 

The tri-rate SDI PHY IP core demonstration setting on the Enciris LT-125 board design is shown 

in Figure I.11. 

 

 

Figure I.11: Tri-rate SDI PHY IP core on LT-125 Enciris board design 

SDI IN 

HDMI OUT 

Power connector 

1.5 V DC 
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host PC 

LED indicator  
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I.5 Conclusion 

 

At the end of this chapter, we have achieved our goal on the implementation of this IP core on 

the Enciris LT-125 board, provided an SMPTE 3G/HD/SD SDI video input functionality on the 

board, by understanding the LatticeECP3 SERDES/PCS, the Lattice tri-rate SDI PHY IP core, 

the LT-125 Enciris board, and particularly the Tri-Rate SDI PHY IP pass-through sample design 

on lattice board and DVI IN and HDMI OUT bypass demo on LT-125 board. 
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CHAPTER II 

“H.264/AVC BITSTREAM DECODER” 

 

 

H.264/AVC is the newest and the most popular video compression/decompression standard of the 

ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. Compared 

to previous coding standards, it is able to deliver higher video quality for a given compression 

ratio, and better compression ratio for the same video quality. In other words, it allows reducing 

the required storage space while maintaining video quality. 

 

This chapter will present: 

 overview of video processing 

 overview of H.264/AVC decoder 

 H.264/AVC parameters - profile and level 

 H.264/AVC bitstream decoder 

 

 

II.1 Overview of video processing 

 

This section presents the sufficient background information underlying the context and 

significance of digital video processing algorithms. 

 

Digital image is a 2-D signal which is composed of very small picture elements called pixels. 

 

Pixel is a small rectangular area which has a uniform intensity value. A higher visual quality is 

achieved with more pixels on the image. Pixel information can be coded using the fundamental 

colors in RGB (red, green and blue) color space or using luminance and chrominance in the YCbCr 

color space: luminance (Y), chrominance blue (Cb) and chrominance red (Cr). The human eye is 

less sensitive to color information than luminous information, thus video systems usually represent 

the pixel information using YCbCr color space because it facilitates the subsampling of color 

information when compared to RGB. Pixels represented in the YCbCr color space can be 

subsampled in order to reduce the information needed to store an image by up to 50%. High quality 

pictures are represented in 4:4:4 format, while 4:2:0 is used in video systems to compress images 

by a factor of 2 with a 4:1 subsampling on each chrominance component. 

 

Video is a sequence of images. Each image is called frame and each frame has equal displaying 

time. Increasing capture and exhibition rates of video images (frames per second) leads a sensation 

of real motion. 

 

Each frame is decomposed into two fields: 

- Even Field: includes the even rows of the frame 

- Odd Field: includes the odd rows of the frame 

 

There are two types of scanned fields: 

- Progressive scanned field: the even and odd fields are captured at the same time 

- Interlaced scanned field: the even and the odd fields are captured at different times 
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Figure II.1: Interlaced vs progressive scan 

 

 

Each Frame is segmented into blocks of pixels. Most common regions of pixels used in image 

processing are: 4×4, 8×8, 8×16, 16×8 and 16×16 pixels. The blocks of pixels is called a 

macroblock of pixel samples, or simply macroblock. A group of macroblocks is called a slice. For 

example, a 16x16 Macroblock (MB) represented in YCbCr 4:2:0 consists of: 

 

- 256 luminance Y pixels or one 16×16 macroblock in Y component which is composed 

of sixteen 4x4 sub-macroblocks in Y component 

- 64 chroma Cb pixels or one 8×8 macroblock in Cb component which is composed of 
four 4x4 sub-macroblocks in Cb component 

- 64 chroma Cr pixels or one 8×8 macroblock in Cr component which is composed of 
four 4x4 sub-macroblocks in Cr component 

 

 

 
Figure II.2: Pixel array organization in a macroblock of 16x16 pixels 
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II.2 Overview of H.264/AVC decoder 

 

The amount of raw video information to display on a high definition television screen is too big to 

be transmitted or stored at a reasonable cost. For that reason, we need a codec (encoder/decoder) 

pair to allow the video compression, maintaining image quality and reducing the amount of data. 

The encoder converts the source information in a compressed form before being transmitted or 

stored, and the decoder is responsible to convert the compressed information in video information 

again. The decoder has mechanisms to reconstruct the video content based on parameters sent by 

the encoder. 

 

H.264/AVC encoding algorithm, which is the newest and the most popular video 

compression/decompression algorithm, was conceived to explore redundancies between 

successive frames and between blocks within a frame, using inter and intra frame prediction, a 

DCT-based transform, a quantization, deblocking filter and an entropy encoder mechanism to 

compress video data. [7] The decoding process in H.264/AVC which is the inverse process of 

encoder is shown in the Figure II.3. 

 

 

 
Figure II.3: H.264/AVC decoder 

 

 

The compressed video bitstream is received in the video decoder within the Network Abstraction 

Layer (NAL) unit. 

 

The entropy decoder or bitstream decoder contains a parser that receives a compressed video 

bitstream in the input from the NAL and decodes the quantized coefficients to generate the residual 

data. Also, it extracts the syntax elements to inter-frame and intra-frame prediction processes. The 

residual data is decoded using fixed or variable length binary codes in one of the entropy decoders: 

Exp-Golomb, CAVLD or CABAD decoder. 

 

The residual data is then processed in the Inverse Transform and Inverse Quantization (IT and IQ) 

steps. Using information decoded from the bitstream, the decoder creates a prediction block or 

decoded residual block after the IT and IQ processing. 

 

The H.264 Standard adopts two modes of block prediction: intra and inter prediction. Inter 

prediction refers to the reuse of information previously decoded frames stored in the decoded 

Decoded Residual 

data 



PHOR VICHEKA PART II CHAPTER II 
MASTER CAMSI 2   H.264/AVC BITSTREAM DECODER 

 

 

14 
 

picture buffer to predict current frame. Intra prediction reconstructs each image block from its 

previous coded block. 

 

Finally, the decoded residual block is added to the predicted blocks of pixels, generating the pixel 

output that is filtered by the deblocking filter, smoothing block edges and improving the 

appearance of displayed images before exhibition. 

 

 

II.3 H.264/AVC parameters - profile and level 

 

The H.264/AVC encoder/decoder’s capabilities is specified by a profile and level. A profile 

defines a set of coding tools or algorithms that can be used in generating a conforming bitstream, 

whereas a level places constraints on certain key parameters of the bitstream. In other words, a 

profile defines specific encoding techniques that you can or can't utilize when encoding the files 

(such as B-frames), while the level defines details such as the maximum resolutions and data rates. 

The profiles is categorized in to 4 main classes: constrained baseline profile, baseline profile, main 

profile and extended profile as shown in Figure II.4. The higher profiles provides more 

functionalities hence the better quality but increasing both decoding complexity and encoding 

time. 

 

 
Figure II.4: H.264/AVC profiles 
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Table II.1: H.264/AVC levels 

 

 

II.4 H.264/AVC bitstream decoder 

 

II.4.1 H.264/AVC bitstream format 

 

Obviously, the decoder operates with a sequence of bits received in a specific format. The byte 

stream format puts a synchronization byte sequence (0×00000001) before every NAL (Network 

Abstraction Layer) unit packet, as shown in Figure II.5. 

 

 
Figure II.5: NAL packets structure 
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The first byte of a NAL unit packet is a header that contains information about the type of NAL 

packet which is shown in Table II.2. As can be seen from the Figure II.5, the payload of NAL 

packet identified as RBSP (Raw Byte Sequence Payload). RBSP describes a row of bits specified 

order of SODB (String Of Data Bits). 

            Table II.2: NAL types 

Type 

(5 bits LSB of the first 

byte in a NAL packet) 

Definition 

0 Undefined 

1 Non-IDR slice 

2 Slice data partition A layer 

3 Slice data partition B layer 

4 Slice data partition C layer 

5 IDR slice 

6 Additional information (SEI) 

7 Sequence parameter set 

8 Picture parameter set 

9 Access unit delimiter 

10 End of sequence 

11 End of stream 

12 Filler data 

13..23 Reserved 

24..31 Undefined 

 

The detailed H.264 data stream is shown in Figure II.6. 

 

 
Figure II.6: Detailed H.264 data stream 

VCL NAL units 

Skip indication 

Start code 
(Byte sequence: 
0×00000001) 
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The Network Abstraction Layer (NAL) consists of a series of NAL units: SPS, PPS, IDR, and 

SLICEs. Sequence Parameter Sets (SPS) and Picture Parameter Sets (PPS) are NAL units that 

signal certain common control parameters to the decoder. For instance, a Sequence Parameter Set 

(SPS) contains parameters that are applied to a complete video sequence such as: the picture order 

count, decoded picture width and height and the choice of progressive or interlaced (frame or 

frame/field) coding. A Picture Parameter Set (PPS) contains parameters that are applied to the 

current decoded picture such as: an picture identifier, a flag to select CAVLD or CABAD entropy 

decoding; the number of reference pictures in list 0 and list 1 that may be used for prediction, 

initial quantized parameters among others. 

 

A coded video sequence begins with an Instantaneous Decoder Refresh (IDR) access unit, made 

up of one or more IDR slices, a special type of Intra coded slice. Subsequent video frames or fields, 

described as Access Units, are coded as slices. The video sequence ends when a new IDR slice is 

received, signaling a new coded sequence, or when the transmission is complete. 

 

Coded video data is communicated in Video Coding Layer (VCL) NAL units, known as coded 

slices. An access unit, a coded frame or field, is made up of one or more slices. At the slice layer, 

each slice consists of a Slice Header and Slice Data. The Slice Data is a series of coded 

macroblocks (MB) and skip macroblock indicators which signal that certain macroblock positions 

contain no data. Each coded macroblock contains the following syntax elements [5]: 

 Macroblock header 

o MB type: I/intra coded, P/inter coded from one reference frame, B/inter coded from 

one or two reference frames. 

o Prediction information: prediction mode(s) for an I macroblock, choice of reference 

frame(s) and motion vectors for a P or B macroblock. 

o Coded Block Pattern (CBP): indicates which luma (Y) and chroma (Cb, Cr) blocks 

contain non-zero residual coefficients. 

o Quantization Parameter (QP), for macroblocks with CBP ≠ 0. 

 Macroblock data or Residual data, for blocks containing non-zero residual coefficients. 

 

II.4.2 Coding 

 

A coded H.264 stream or an H.264 file consists of a series of coded symbols. In H.264/AVC 

standard, the entropy decoder or bitstream decoder contains several methods for decoding the 

coded symbols to generate the residual data. These methods are as follows [5]: 

 Fixed length decoding: a symbol is extracted from a binary code with a specified fixed 

length (n bits). 

 Exponential-Golomb variable length decoding: a symbol is extracted from a binary 

code with a varying number of bits (v bits). In general, at encoder side, shorter Exp-

Golomb codewords are assigned to symbols that occur more frequently. 

 CAVLD: Context-Adaptive Variable Length Decoding, a specially-designed method of 

decoding transform coefficients in which different sets of variable-length codes are 

extracted depending on the statistics of recently-coded coefficients, using context 

adaptation. 

 CABAD: Context-Adaptive Binary Arithmetic Decoding, a method of arithmetic 

decoding in which the probability models are updated based on previous coding 

statistics. 
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Syntax elements/data occurring in the bitstream/syntax above the slice data level are decoded using 

Fixed Length decoding or Exp-Golomb decoding. Syntax elements/data at the slice data level and 

below are decoded using CAVLD or CABAD decoding. The Exp-Golomb decoding and CAVLD 

will be described further in the following sections. 

 

II.4.2.1 Exp-Golomb decoding 

 

Exp-Golomb decoding uses smaller codeword length for frequently occurring data and larger 

codeword length for less frequently occurrences. As a result, the average codeword length is 

reduced and higher compression is achieved. An Exp-Golomb codeword has the following 

structure: [M zero] [1] [INFO], where M denotes the number of leading zero and INFO denotes 

an M-bit field of information. Table II.3 and Table II.4 list the first few signed Exp-Golomb 

codewords and unsigned Exp-Golomb codewords respectively. 

 

                  Table II.3: Signed Exp-Golomb codewords 

code_num Codeword 

0 1 

1 010 

2 011 

3 00100 

4 00101 

5 00110 

6 00111 

7 0001000 

8 0001001 

... ... 

 

                      Table II.4: Unsigned Exp-Golomb codewords 

code_num Codeword 

0 1 

1 010 

-1 011 

2 00100 

-2 00101 

3 00110 

-3 00111 

4 0001000 

-4 0001001 

... ... 

 

II.4.2.2 Context-Adaptive Variable Length Decoding, CAVLD 

 

Context-Adaptive Variable Length Decoding (CAVLD) is the inverse process of CAVLC, or a type 

of run length decoding, where the number of zeros is increased or reconstructed by a run length 

parameter that is transmitted by CAVLC. The algorithm CAVLC provides better efficiency but 

increasing decoding complexity in compression. During video compression, many video 

coefficients become zero after the quantization step, which is termed a run of zeros. Instead of 

encoding each zero into the video compression stream, run length compression is used, where the 

run length of the zeros is encoded to increase the overall compression efficiency. 

 

CAVLC is designed to take advantage of several characteristics of quantized 4x4 blocks [5]: 
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 After prediction, transformation and quantization, blocks are typically sparse (containing 

mostly zeros). 

 The highest non-zero coefficients after zig-zag scan are often sequences of +/- 1. CAVLC 

signals the number of high-frequency +/-1 coefficients in a compact way. 

 The number of non-zero coefficients in neighboring blocks is correlated. The number of 

coefficients is decoded using a look-up table; the choice of look-up table depends on the 

number of non-zero coefficients in neighboring blocks. 

 The level (magnitude) of non-zero coefficients tends to be higher at the start of the reordered 

array (near the DC coefficient) and lower towards the higher frequencies. CAVLC takes 

advantage of this by adapting the choice of VLC look-up table for the “level” parameter 

depending on recently coded level magnitudes. 

 

Figure II.7 shows the flowchart for CAVLC codec: (a) Decoder and (b) Encoder. Table II.5 

describes CAVLC/CAVLD decoder syntax elements. Table II.6 indicates the choice of look-up 

table for coeff_token. 

 

 
 

 
 

Figure II.7: Flowchart for CAVLC codec: (a) Decoder and (b) Encoder 
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 Table II.5: CAVLC/CAVLD decoder syntax elements 

Syntax Elements Description 

nC the parameter to choose the look-up table for coeff_token 

coeff_token the number of all non-zero coefficients (TotalCoeff) and the number 

of trailing ones (T1s) are encoded by this syntax element 

trailing_ones_sign_flag the sign bit of each T1 is reverse zig-zag scan order is encoded by 
this syntax element 

level The value of each non-zero coefficient (except for T1s) is encoded by 

this syntax element 

total zeros The total number of zero coefficients preceding the last non-zero 
coefficients in zig-zag order is encoded by this syntax element 

run before The number of successive zero coefficients following the non-zero 

coefficients in reverse zig-zag order. 

 

      Table II.6: Choice of look-up table for coeff_token 

 
 

In the following examples, we assume that table Num-VLC0 [6] is used to encode coeff_token. 

 

 
0,3,0,1,-1,-1,0,1,0… 

TotalCoeffs = 5, indexed from highest frequency (4) to lowest frequency (0) 

TotalZeros = 3 

T1s = 3 (in fact there are 4 trailing ones but only 3 can be encoded as a “special case”) 

 

Encoding: 

 

Element Value Code 

coeff_token TotalCoeffs = 5, T1s = 3 0000100 

T1 sign (4) + 0 

T1 sign (3) - 1 

T1 sign (2) - 1 

Level (1) +1 (use Level_VLC0) 1 

Level (0) +3 (use Level_VLC1) 0010 

TotalZeros 3 111 

run_before(4) ZerosLeft = 3; run_before = 1 10 

run_before(3) ZerosLeft = 2; run_before = 0 1 

run_before(2) ZerosLeft = 2; run_before = 0 1 

run_before(1) ZerosLeft = 2; run_before = 1 01 

run_before(0) ZerosLeft = 1; run_before = 1 No code required; last coefficient. 

 

The transmitted bitstream for this block is 000010001110010111101101. 

 

http://en.wikipedia.org/wiki/File:4x4CAVLC.svg
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Decoding: The output array is “built up” from the decoded values as shown below. Values added 

to the output array at each stage are underlined. 

 

Code Element Value Output array 

0000100 coeff_token TotalCoeffs = 5, T1s = 3 Empty 

0 T1 sign + 1 

1 T1 sign - -1, 1 

1 T1 sign - -1, -1, 1 

1 Level +1 1, -1, -1, 1 

0010 Level +3 3, 1, -1, -1, 1 

111 TotalZeros 3 3, 1, -1, -1, 1 

10 run_before 1 3, 1, -1, -1, 0, 1 

1 run_before 0 3, 1, -1, -1, 0, 1 

1 run_before 0 3, 1, -1, -1, 0, 1 

01 run_before 1 3, 0, 1, -1, -1, 0, 1 

 

The decoder has inserted two zeros; however, TotalZeros is equal to 3 and so another 1 zero is 

inserted before the lowest coefficient, making the final output array: 0, 3, 0, 1, -1, -1, 0, 1. After 

reconstruction a 4x4 block, we get the sixteen coefficients: 0, 3, 0, 1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0. 
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CHAPTER III 

“H.264/AVC BITSTREAM DECODER HARDWARE DESIGN IN 

VERILOG MODELS” 

 

 

The bitstream decoder or entropy decoder is a block that handles the compressed video bitstream 

within the video decoder. The bitstream decoder is required to process the input bitstream, identify 

syntactic elements and route the associated data to the appropriate decoder module, like the inter-

frame or the intra-frame prediction blocks. 

 

This chapter will describe about: 

 bitstream decoder hardware architecture 

 tools used in the FPGA development flow design 

 hardware implementation and results 

 

III.1 Bitstream decoder hardware architecture 

 

The H.264 decoder which is going to be designed can support the constrained baseline profile, 

level at 4 (video format 1080 HD and resolution 1920x1088 pixels). The implemented hardware 

architecture for the bitstream decoder corresponding to this decoder is presented in Figure III.1. 

 

 
 

Figure III.1: Bitstream decoder hardware architecture 
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III.1.1 Flowchart of bitstream decoder 

 

The bitstream decoder is the first processing step of decoder and it is a highly sequential process. 

As shown in Figure III.2, the compressed video bitstream is decoded as the following steps: 

 

1. Detect the start code and decode NAL type: the byte sequence (0×00000001) and the first 

byte of the NAL packet 

2.  

 if the NAL type is SPS (5 bits of the first byte in a NAL packet = 7) , decode SPS layer 

 if the NAL type is PPS (5 bits of the first byte in a NAL packet = 8), decode PPS layer  

 if the NAL type is IDR slice or Non-IDR slice (5 bits of the first byte in a NAL packet = 

1 or 5), decode: 

a) Slice header 

b) Macroblock header 

c) Macroblock data 

3. Send the decoded bitstream (residual data, and syntactic elements) to the appropriate 

decode module for further processing 

4.  Restart step 1 until the end of video bitstream. 

 

 
Figure III.2: Flowchart of bitstream decoder 
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III.1.2 Functionalities of each module 

 

As shown in Figure III.1, the functionalities of each module are as follow: 

 

 Master state machine: outputs the controlled signals to activate the modules for decoding the 

corresponded layer. 

 

 Start code detector: reads byte by bytes from video bitstream, detects the start code (byte 

sequence 0×00000001), decodes NAL type (5 bits of the first byte in a NAL packet), and 

outputs the data one byte each cycle to the FIFO in bit buffer module starting from the first 

byte of NAL packet (excluded). 

 

 Bit buffer: this module outputs the data which is decoded using whether fixed length decoding, 

Exp-Golomb, or CAVLD and it contains the following sub-modules: 

 FIFO: stores the output data from the Start code detector module 

 Bytes buffer: stores bytes from FIFO, aligns buffer position by shifting the bytes that has 

been decoded 

 FLC buffer: stores bytes from Bytes buffer, aligns buffer position by shifting the bits that 

has been decoded, is used for fixed length decoding 

 VLC buffer: stores bytes from Bytes buffer, aligns buffer position by shifting the bits that 

has been decoded, is used for Exp-Golomb decoding and CAVLD decoding 

 Fixed length decoding: decodes the syntax elements that is encode in fixed length code 

 Exp-Golomb decoding: decodes the syntax elements that is encode in Exp-Golomb code 

 CAVLD decoding: decodes the syntax elements that is encode in CAVLC code 

 

 Bit buffer interface: is the multiplexer between the threes decoding:  fixed length decoding, 

Exp-Golomb, or CAVLD. 

 

 SPS decoder: decodes the syntax elements in sequence parameter set layer, outputs the 

decoded data such as: the picture order count, decoded picture width and height and the choice 

of progressive or interlaced (frame or frame/field) coding to the appropriate decoder module. 

 

 PPS decoder: decodes the syntax elements in picture parameter set layer, outputs the decoded 

data such as: an picture identifier, a flag to select CAVLD or CABAD entropy decoding; the 

number of reference pictures in list 0 and list 1 that may be used for prediction, and initial 

quantized parameters to the appropriate decoder module. 

 

 Slice header decoder: decodes the syntax elements in slice header layer, outputs the decoded 

data such as: slice type, frame number, picture order count type, and slice QP data to the 

appropriate decoder module (ex. macroblock header decoder module). 

 

 Macroblock header decoder: decodes the syntax elements in macroblock header layer, outputs 

the decoded data such as: macroblock type, code block pattern, and prediction mode to the 

appropriate decoder module (ex. macroblock data decoder module). 

 

 Macroblock data decoder: decodes the data elements or residual data in macroblock data 

layer, outputs the residue coefficients to the appropriate decoder module (ex. IT/IQ module). 

 

Syntax elements/data occurring in the bitstream/syntax at SPS, PPS, Slice header and Macroblock 

header layer are decoded using Fixed Length decoding or Exp-Golomb decoding. Syntax 

elements/data at Macroblock data layer are decoded using CAVLD decoding. 
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III.2 References models and tools used in the FPGA development flow design 

 

The references models that are used for helping understanding and coding H.264 hardware decoder 

are: 

1. Joint Model (JM) ITU-T H.264 encoder and decoder model in C code as Microsoft visual 

studio project [8] 

2. Enciris H.264 encoder model in C code as Microsoft visual studio project 

3. Enciris VC1 decoder hardware model as Altium project 

4. Nova Verilog H.264 decoder model [9] 

 

The tools that are used in the FPGA development flow design are: 

1. Notepad++ : to create and edit the source codes 

2. Altium designer: to compile the source codes and to create top level Verilog files 

3. ActiveHDL: to do the simulation of Verilog files and verify the results 

4. Python: to create CAVLD ROM table file in .mem for IP Express diamond which generates 

the CAVLD ROM table in Verilog file 

5. Microsoft visual studio, Joint Model (JM) ITU-T H.264 encoder and decoder model in C 

code project: to create the trace file .txt of decoder 

6. Beyond Compare: to compare and verify the results between the trace file created by the 

simulation in ActiveHDL and the trace file created by JM ITU-T C code model project 

7. Diamond 3.1: to do the synthesize design, map design, place and route design 

 

 

Figure III.3: Tools used in the implementation      
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III.3 Hardware Implementation 

 

For the time being, the bitstream decoder is not completely implemented yet. Because of lacking 

time and because of the complexity of CAVLD decoding, the CAVLD decoding is not completely 

coded yet so that the bitstream decoder at the present can decode only the SPS, PPS, Slice header, 

and Macroblock header layer. And, each layer was decoded by the corresponding module which 

is coded as a state machine because the video stream input is a serial data and some syntax elements 

and data elements is encoded in variable length codes, Exp-Golomb code and CAVLD code. The 

following sections demonstrates how to implement the Exp-Golomb decoding and CAVLD 

decoding. 

 

III.3.1 Implementation of Exp-Golomb decoding 

 

As shown in Figure III.4, the code_num is decoded as follows: 

1. Read a series of consecutive zeros until a 1 is detected. Count the number of zeros (M). 

2. Read {[1], [M bits INFO]}. 

3.  

 For unsigned Exp-Golomb codewords: 

code_num = {[1], [M bits INFO]} - 1 

  For signed Exp-Golomb codewords: 

- Read the Least Significant Bit (LSB) of {[1], [M bits INFO]} 

o If the LSB of {[1], [M bits INFO]} is equal to zero (positive number), then: 

code_num = {[1], [M bits INFO]} / 2 

o If the LSB of {[1], [M bits INFO]} is equal to one (negative number), then: 

code_num = Two’s Complement of ({[1], [M bits INFO]} / 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.4: Implementation of Exp-Golomb decoding 

 

 

III.3.2 CAVLD decoding 

 

In order to design the sub-module CAVLD decoding, the look-up table or ROM table is needed 

because many parameter in CAVLD decoding such as: coeff_token, total zeros, and run before used 

look-up table. 

 

Decode zeros prefix length 

(M) 

Read {[1], [M bits INFO]} 

Decode code_num 

Example: the input data is 0010010101… 

1. zeros prefix length (M) = 2d 

2. {[1], [M bits INFO]} = 100b 

3.  

 Unsigned Exp-Golomb codewords: 

code_num = 100b – 1b = 011b 

 Signed Exp-Golomb codewords: 

LSB = 0 

code_num = 100b > 1 = 010b 

Input data 
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The look-up table is created by using the method table partitioning, called Node-Leaf method. 

Figure III.5 shows the Node-Leaf method algorithm. 

 

 
Figure III.5: Node-Leaf method algorithm 

 

 

The Node-Leaf method algorithm with N bits partitioning processes as the following: 

 

- Reading N bits of input data. These N bits are processed in the initial Table/Node (for 

example Table/Node 0). If these N bits are a node (not the LSB bits of input data), these 

N bits indicate the next look-up Table/Node (for example Table/Node K) and the 

process continues to read the next N bits of input data which are processed in the 

corresponding Table/Node (for example Table/Node K) addressed by the previous N 

bits of input data. Otherwise, it will output the corresponding data in the look-up 

Table/Node. 

 

Example:  With the input data is 00000011 and the look-up table of total_zeros shown in Figure 

III.6, the Node-Leaf method algorithm with 3 bits partitioning processes as follow: 

 

1. 1st step: reading 3 bits of input data, we got 000 bits. These 3 bits (000 bits) are a node 

and it addresses the next look-up table or node: Node 1. 

2. 2nd step: reading next 3 bits of input data, we got 000 bits which is looked up in the 

Table/Node 1. These 3 bits (000 bits) are a node and it addresses the next look-up table or 

node: Node 2. 

3. 3rd step: reading next 3 bits of input data, we got 11X bits which is looked up in the 

Table/Node 2. These 3 bits (11X bits) are a leaf (not a node), so the output data with 

corresponding to these 3 bits (11X bits) are the value 11 in decimal. 
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Figure III.6: Look-up table of total_zeros 

 

The detail of the implementation of CAVLD decoding is provided in reference [6]. 

 

 

III.4 Results 

 

The simulation results of the implementation is obtained by the simulation the design in 

ActiveHDL with the two modules of test bench added: tb_clock module to generate signal clock 

and reset; tb_read_bitstream module to read one byte from file (file .264) providing the video 

bitstream to the bitstream decoder module (bsd module). 

 

 
Figure III.7: Top-level test bench block schematics of bitstream decoder in Altium designer 
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The Figure III.8 shows the implementation in ActiveHDL. The results is verified by the simulation 

chronograms and the output file of the simulation verilog_trace.txt. 

  

 

Figure III.8: Simulation results in ActiveHDL 

 

 

The Figure III.9 shows the trace file created by the simulation in ActiveHDL and the trace file 

created by Joint Model (JM) ITU-T H.264 encoder and decoder C code model. 

 

 

 
 

Figure III.9: Trace file created by the simulation in ActiveHDL and the trace file created by JM 

ITU-T C code model project 

  

Trace file created by 
AtiveHDL 

Trace file created by 
JM ITU-T C code 
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Without the CAVLD decoding and the Macroblock data decode, the synthesize design, map design, 

place and route design in Diamond 3.1 on the Lattice FPGA device - LFE3-150EA-6FN1156C 

show that our design can run on the maximum frequency of 198.334 MHz with the clock constraint 

of 150 MHz. And, the resource FPGA used in the design is shown in Table III.1. 

 

          Table III.1: Resources FPGA used in the design 

Number of registers: 468 out of 115296 (0 %) 

Number of SLICEs: 535 out of 74520 (1 %) 

Number of LUT4s: 852 out of 149040 (1 %) 

 

The Figure III.10 shows the CAVLD ROM table file in .mem generated by the python source codes. 

The IP Express diamond will use this .mem file to generate the CAVLD ROM table in Verilog (.v) 

file, as shown in Figure III.11. 

 
 

 

Figure III.10: CAVLD ROM table file in .mem generated by the python source codes 

 

 

 

Figure III.11: Lattice FPGA module – ROM in IP Express diamond 



CONCLUSION 

 

 

 

In this master thesis, chapter I described the first part of my work during the internship. It was 

devoted to a description of the SDI video interface and the demonstration of the implementation 

of a Lattice tri-rate SDI PHY IP core on a Lattice FPGA embedded in the Enciris LT-125 board. 

Chapter I provides a quite large amount of information about the high data-rate SERDES/PCS 

interface of Lattice ECP3 FPGAs, the Lattice tri-rate SDI PHY IP core, and the Enciris LT-125 

board. The most interesting aspect in that task was due to the complexity of both the 

SERDES/PCS interface and the Lattice tri-rate SDI PHY IP core: configuration and generation 

of the related IP cores were really subtle and sometimes mind-boggling. However, the Lattice 

SDI IP core was successfully implemented on the Enciris LT-125 board, which now possesses an 

SMPTE 3G/HD/SD SDI video input functionality. This met the technical needs of the company 

who had not yet had any boards which support an SDI video input functionality by incorporating 

with the Lattice SDI IP core. 

 

The second part of my internship is focused on the hardware architecture design and 

implementation of an H.264/AVC bitstream decoder (BSD) which was specifically dealt with in 

the subsequent chapters. The CAVLD decoder was actually the most challenging module. I 

successfully managed to design the bitstream decoder which can handle the decoding of SPS, 

PPS, Slice header, and Macroblock header layers of the bitstream, as well as the CAVLD 

decoding of some 4x4-block fields by using the VLC tree table method (Node-Leaf method). The 

preliminary synthesis of the design yields a maximum operating frequency of 198.334 MHz on a 

Lattice LFE3-150EA-6FN1156C FPGA device with a clock frequency constraint of 150 MHz.  

 

In the near future, the bitstream decoder will be completed by adding the finalized CAVLD 

decoding sub-module, and the macroblock data decoder module. Afterwards, the IT/IQ, intra 

prediction and inter prediction modules will need to be designed and integrated in order to form 

the H.264/AVC decoder. The purpose is to develop a commercial high data-rate (about 50-100 

Mbps) H.264 1080p-P30 decoder compliant with the Constrained Baseline Profile, and level 4. 

 

Throughout my internship, several technical and scientific aspects were covered: 

First of all, I discovered and dug into the amazing world of advanced video coding/decoding 

with its lengthy standards and elaborate video processing algorithms. Second, I have gone 

through an entire FPGA development cycle (HDL code design, functional simulation, testing, 

and full-scale validation) which helped me understand and practice the full scope and the 

innumerable difficulties of FPGA hardware design, development and implementation, in a real-

life industrial context. Hence, I was naturally led to use a variety of software tools for FPGA 

design such as: Diamond, IPexpress, Altium Designer, Python, etc. It is worthy to note that due 

to the Enciris statement of work I was also forced to learn from scratch the Verilog HDL 

modelling and programming language, which I find offers more flexibility and potentialities than 

VHDL. Finally, my work allowed me to better grasp the stakes of embedded electronic system 

development with highly constrained operating and computational performance specifications. It 

was a great experience: I much enjoyed the work of an R&D electrical engineer, the supreme 

reward being the satisfaction of seeing my design work in a full scale commercial product, which 

supplies the bridge between theoretical training and industrial achievements. I am grateful to 

Enciris for having accepted to let me participate in this great technological and personal venture.  
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REPORT SUMMARY 
 

Nowadays, digital video is widely used in many applications in the way of creating or sharing for 

example the digital television broadcasting, internet video streaming, mobile video streaming, 

DVD video and video calling application. Therefore, effective video coding is an essential 

component of these applications and can make the difference between the success and failure of 

a business model. The video coding is the process of compressing and decompressing a digital 

video signal which is sent/received by various interfaces such as: SD-SDI, HD-SDI, 3G-SDI, 

DVI and HDMI. There are many methods or algorithms to compress and decompress digital 

video such as: VC1, H.262/MPEG-2, H.263/MPEG-4, and H.264/AVC algorithm. Among these 

video coding algorithms, H.264/AVC has huge significance to the broadcast, internet, consumer 

electronics, mobile and security industries application. Also, H.264/AVC is the latest in a series 

of standards published by the ITU and ISO. It describes and defines a method of coding video 

that can give better performance than any of the preceding standards. H.264/AVC makes it 

possible to compress video into a smaller space, which means that a compressed video clip takes 

up less transmission bandwidth and/or less storage space compared to older codecs. 

 

This master thesis was organized in two parts: 

 The first part which is composed of one chapter: Chapter I, studied about the SDI video 

interface by demonstrating the implementation of a Lattice tri-rate SDI PHY IP core on a 

Lattice FPGA of the Enciris LT-125 board in order to provide an SMPTE 3G/HD/SD 

SDI video input functionality on the board without using any external chipset like the 

Gennum chipset which is used today on Enciris boards. 

 

 The second part which contains two chapters: Chapter II and Chapter III, described about 

the H.264/AVC video decoding algorithm, particularly the H.264/AVC bitstream decoder 

hardware architecture design and implementation. 

 

In the first part of this master thesis, I have successfully implemented a Lattice tri-rate SDI PHY 

IP core on the Enciris LT-125 board, provided an SMPTE 3G/HD/SD SDI video input 

functionality on the board that met the technical needs of the company. As for the second part, 

the implementation of bitstream decoder is not totally completed yet because of lacking time and 

the complexity of CAVLD decoding. Somehow, I successfully managed to design the bitstream 

decoder which can handle the decoding of SPS, PPS, Slice header, and Macroblock header layers 

of the bitstream, as well as the CAVLD decoding of some 4x4-block fields by using the VLC 

tree table method (Node-Leaf method). The preliminary synthesis of the design yields a 

maximum operating frequency of 198.334 MHz on a Lattice LFE3-150EA-6FN1156C FPGA 

device with a clock frequency constraint of 150 MHz. 


