

Department of

CAMSI - Conception d'Architectures de Machines et de Systèmes

Informatiques

MASTER THESIS

“Video decoding: SDI interface implementation &

H.264/AVC bitstream decoder hardware

architecture design and implementation”

Author:

Mr. Vicheka PHOR

School supervisor:

Mr. Jacques JORDA

Company advisor:

Mr. Phillip WEISSFLOCH

Internship duration:

5 months and a half

29 August 2014

Academic Year 2013-2014

Department of
CAMSI - Conception d'Architectures de Machines et de Systèmes

Informatiques

MASTER THESIS

“Video decoding: SDI interface implementation &

H.264/AVC bitstream decoder hardware

architecture design and implementation”

Author:

Mr. Vicheka PHOR

School supervisor:

Mr. Jacques JORDA

Company advisor:

Mr. Phillip WEISSFLOCH

Internship duration:

5 months and a half

29 August 2014

Academic Year 2013-2014

CONTENTS

LISTS OF FIGURE

LISTS OF TABLE

ABBREVIATIONS

ACKNOWLEDGEMENT

ABOUT ENCIRIS TECHNOLOGIES COMPANY

INTRODUCTION

PART I

Chapter I: Implementation of Lattice tri-rate serial digital interface PHY IP core

I.1 Overview of Lattice ECP3 SERDES/PCS .. 1

I.2 Overview of Lattice tri-rate SDI PHY IP core .. 2

I.2.1 Lattice tri-rate SDI PHY IP core functional description .. 2

I.2.2 Lattice tri-rate SDI PHY IP core features and applications .. 3

I.2.3 Tri-Rate SDI PHY IP pass-through demo ... 3

I.3 Overview of Enciris LT-125 board ... 5

I.3.1 LT-125 board’s functional description .. 6

I.3.2 LT-125 board’s features and applications ... 6

I.3.3 DVI IN and HDMI OUT bypass demo of LT-125 board ... 7

I.4 Implementation of the tri-rate SDI PHY IP core on the Enciris LT-125 board 8

I.5 Conclusion ... 10

PART II

Chapter II: H.264/AVC bitstream decoder

II.1 Overview of video processing .. 11

II.2 Overview of H.264/AVC decoder .. 13

II.3 H.264/AVC parameters - profile and level ... 14

II.4 H.264/AVC bitstream decoder ... 15

II.4.1 H.264/AVC bitstream format .. 15

II.4.2 Coding ... 17

II.4.2.1 Exp-Golomb decoding... 18

II.4.2.2 Context-Adaptive Variable Length Decoding, CAVLD 18

Chapter III: H.264/AVC bitstream decoder hardware design in Verilog models

III.1 Bitstream decoder hardware architecture .. 22

III.1.1 Flowchart of bitstream decoder ... 23

III.1.2 Functionalities of each module ... 24

III.2 References models and tools used in the FPGA development flow design 25

III.3 Hardware Implementation .. 26

III.3.1 Implementation of Exp-Golomb decoding .. 26

III.3.2 CAVLD decoding... 26

III.4 Results ... 28

CONCLUSION

REFERENCES

LISTS OF FIGURE

Figure I.1: SERDES/PCS Quad Block Diagram.. 2

Figure I.2: Tri-Rate SDI PHY IP Core, High-Level Functional Diagram..................................... 2

Figure I.3: Pass-through scheme ... 3

Figure I.4: Tri-Rate SDI PHY IP pass-through sample design ... 4

Figure I.5: LT-125 Overview .. 5

Figure I.6: Top view of the LT-125 Board .. 5

Figure I.7: LT-125 block diagram ... 6

Figure I.8: Flow of bitstream implementation ... 7

Figure I.9: DVI IN and HDMI OUT bypass demo .. 8

Figure I.10: SDI scheme on the LT-125 board .. 9

Figure I.11: Tri-rate SDI PHY IP core on LT-125 Enciris board design 9

Figure II.1: Interlaced vs progressive scan .. 12

Figure II.2: Pixel array organization in a macroblock of 16x16 pixels 12

Figure II.3: H.264/AVC decoder... 13

Figure II.4: H.264/AVC profiles ... 14

Figure II.5: NAL packets structure.. 15

Figure II.6: Detailed H.264 data stream .. 16

Figure II.7: Flowchart for CAVLC codec: (a) Decoder and (b) Encoder 19

Figure III.1: Bitstream decoder hardware architecture ... 22

Figure III.2: Flowchart of bitstream decoder ... 23

Figure III.3: Tools used in the implementation .. 25

Figure III.4: Implementation of Exp-Golomb decoding .. 26

Figure III.5: Node-Leaf method algorithm .. 27

Figure III.6: Look-up table of total_zeros ... 28

Figure III.7: Top-level test bench block schematics of bitstream decoder in Altium designer 28

Figure III.8: Simulation results in ActiveHDL .. 29

Figure III.9: Trace file created by the simulation in ActiveHDL and the trace file created by JM

ITU-T C code model project ... 29

Figure III.10: CAVLD ROM table file in .mem generated by the python source codes 30

Figure III.11: Lattice FPGA module – ROM in IP Express diamond ... 30

LISTS OF TABLE

Table I.1: JTAG connector ... 4

Table II.1: H.264/AVC levels ... 15

Table II.2: NAL types ... 16

Table II.3: Signed Exp-Golomb codewords .. 18

Table II.4: Unsigned Exp-Golomb codewords .. 18

Table II.5: CAVLC/CAVLD decoder syntax elements.. 20

Table II.6: Choice of look-up table for coeff_token .. 20

Table III.1: Resources FPGA used in the design ... 30

ABBREVIATIONS

3G Third Generation

AVC Advance Video Coding

CABAC Context-based Adaptive Binary Arithmetic Coding

CABAD Context-based Adaptive Binary Arithmetic decoding

CAVLC Context-based Adaptive Variable Length Coding

CAVLD Context-based Adaptive Variable Length decoding

CBR Constant Bit Rate

CPB Coded Picture Buffer

DCT Discrete Cosine Transform

DDR Double Data Rate

DPB Decoded Picture Buffer

DUT Decoder under test

DVI Digital Visual Interface

FIFO First-In, First-Out

FLC Fixed Length Coding

FPGA Field Programmable Gate Array

HD High Definition

HDL Hardware Description Language

HDMI High Definition Multimedia Interface

HRD Hypothetical Reference Decoder

HSS Hypothetical Stream Scheduler

IDR Instantaneous Decoding Refresh

IP Intellectual Property

IT/IQ Inverse Transform / Inverse Quantization

ITU-T International Telecommunication Union - Telecommunication standardization sector

JM Joint Model

JTAG Joint Test Action Group

LDR Low Data-Rate

LN Line Number

LSB Least Significant Bit

LUT4 4-input Look Up Table

MB Macroblock

MBAFF Macroblock-Adaptive Frame-Field Coding

MPEG Moving Picture Experts Group

MSB Most Significant Bit

MVC Multiview Video Coding

NAL Network Abstraction Layer

PCI Peripheral Component Interconnect

PCS Physical Coding Sublayer

PHY Physical Layer

PLL Phase Lock Loop

QP Quantization Parameter

RAM Read Access Memory

RBSP Raw Byte Sequence Payload

R&D Research and Development

ROM Read Only Memory

RX Receiver

SD Standard Definition

SDI Serial Digital Interface

SDK Software Development Kit

SERDES Serializer/Deserializer

SEI Supplemental Enhancement Information

SMPTE Society of Motion Picture and Television Engineers

SODB String Of Data Bits

SVC Scalable Video Coding

TMDS Transition Minimized Differential Signaling

TX Transmitter

USB Universal Serial Bus

UUID Universal Unique Identifier

VBR Variable Bit Rate

VCL Video Coding Layer

VLC Variable Length Coding

VPB Video Protocol Board

VUI Video Usability Information

XAUI Xilinx 10 Gigabit Attachment Unit Interface

ACKNOWLEDGEMENT

Every project big or small is successful largely due to the effort of a number of great people who

have always given their valuable advice or lent a helping hand. I sincerely appreciate the

inspiration, support and guidance of all those people.

I, Mr. Vicheka PHOR, the student of University Toulouse III - Paul Sabatier, am extremely

grateful to Enciris Technologies Company, Mr. Phillip WEISSFLOCH and Ms. Cornelia

WEISSFLOCH, the director and the co-director of the company, for giving me an opportunity to

undergo my internship.

At this juncture, I feel deeply honored in expressing my sincere thanks to Mr. Malik CISSÉ, Mr.

Rémi DUPIN, Mr. Fréderic REQUIN, and Mr. Mickaël POSTOLOVIC, who are engineers at the

company for their guidance, their kindness, their time and their help during my internship.

I would like also to thank to all staffs at the company for their generous attitudes and friendly

behavior.

Also, I would like to thank Mr. Abdelaziz M’ZOUGHI and Mr. Jacques JORDA, the directors of

CAMSI department for accepting me to study the Master 2 professional degree in CAMSI

department.

I would like also to express my gratitude to Mr. François THIEBOLT, a professor in CAMSI

department for his support, his time and his encouragement.

I would like also to show my appreciation to Mr. Ponia PECH, who is an engineer at company

and who is like a brother to me for his kind-heart, his support, his inspiration and his great help.

In the end, I would like to place a deep sense of gratitude to my family members and my friends

who have been constant source of inspiration during my internship.

ABOUT ENCIRIS TECHNOLOGIES COMPANY

Enciris Technologies Company, which was founded in February 2006 in Gaillac, France, is an

internationally oriented company, a leading designer and manufacturer of high performance

video processing hardware for OEMs (Original Equipment Manufacturer) medical video,

internet broadcasting, security and surveillance, inspection systems and robotics, and

professional users. It provides solutions for customers aiming to add affordable HD video

compression, streaming, and storage to their products or services.

Specialized in high definition video processing, Enciris Technologies has developed its own

HDTV compression and decompression technology that complies with widely used standards

such as VC-1/SMPTE-421M and H.264. Enciris Technologies is Lattice LEADER design

services partners. Its activities include:

 design and manufacture high definition video systems,

 design and develop board and module level products incorporating Lattice FPGAs,

 develop IP for FPGAs,

 build VC-1/SMPTE-421M and H.264 solutions.

Enciris Technologies can modify its own standard products or design hardware from scratch to

meet your video acquisition, compression, or processing requirements.

Contact

Company: Enciris Technologies, SAS

Number and street: 22, Avenue de l'Europe

City: Gaillac

Postal code/zip: 81600

Region: Midi-Pyrénées

Country: France

Telephone: +33 581 180 112

Fax: +33 826 420 835

Email: info@enciris.com

Other information

Launched: February 2006

Number of employees: 9

Sales (mil): $1.11

INTRODUCTION

Nowadays, digital video is widely used in many applications in the way of creating or sharing for

example the digital television broadcasting, internet video streaming, mobile video streaming,

DVD video and video calling application. Therefore, effective video coding is an essential

component of these applications and can make the difference between the success and failure of

a business model. The video coding is the process of compressing and decompressing a digital

video signal which is sent/received by various interfaces such as: SD-SDI, HD-SDI, 3G-SDI,

DVI and HDMI. There are many methods or algorithms to compress and decompress digital

video such as: VC1, H.262/MPEG-2, H.263/MPEG-4, and H.264/AVC algorithm. Among these

video coding algorithms, H.264/AVC has huge significance to the broadcast, internet, consumer

electronics, mobile and security industries application. Also, H.264/AVC is the latest in a series

of standards published by the ITU and ISO. It describes and defines a method of coding video

that can give better performance than any of the preceding standards. H.264/AVC makes it

possible to compress video into a smaller space, which means that a compressed video clip takes

up less transmission bandwidth and/or less storage space compared to older codecs.

This master thesis is organized in two parts:

 The first part which is composed of one chapter: Chapter I, will study about the SDI

video interface by demonstrating the implementation of a Lattice tri-rate SDI PHY IP

core on a Lattice FPGA of the Enciris LT-125 board in order to provide an SMPTE

3G/HD/SD SDI video input functionality on the board without using any external chipset

like the Gennum chipset which is used today on Enciris boards.

- Chapter I: Implementation of Lattice tri-rate serial digital interface PHY IP core,

will provide an overview of LatticeECP3 SERDES/PCS, an overview of Lattice

tri-rate SDI PHY IP core, an overview of LT-125 Enciris board and the

implementation of the tri-rate SDI PHY IP core on the Enciris LT-125 board.

 The second part which contains two chapters: Chapter II and Chapter III, will describe

about the H.264/AVC video decoding algorithm, particularly the H.264/AVC bitstream

decoder hardware architecture design and implementation.

- Chapter II: H.264/AVC bitstream decoder, will introduce an overview of video

processing, an overview of H.264/AVC decoder, H.264/AVC parameters - profile

and level, and H.264/AVC bitstream decoder.

- Chapter III: H.264/AVC bitstream decoder hardware design in Verilog models,

will cover the bitstream decoder hardware architecture, tools used in the FPGA

development flow design, hardware implementation and results.

PART I

CHAPTER I
“IMPLEMENTATION OF LATTICE TRI-RATE

SERIAL DIGITAL INTERFACE IP CORE”

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

1

CHAPTER I

“IMPLEMENTATION OF LATTICE TRI-RATE SERIAL DIGITAL

INTERFACE PHY IP CORE”

This chapter will demonstrate the implementation of a Lattice tri-rate SDI PHY IP core on a

Lattice FPGA of the Enciris LT-125 board in order to provide an SMPTE 3G/HD/SD SDI video

input functionality on the board without using any external chipset like the Gennum chipset

which is used today on Enciris boards.

Serial Digital Interface (SDI) is the most popular raw video connectivity standard used in

television broadcast studios and video production facilities. With SDI, the high resolution video

stream can be transmitted through a 75-Ohm coaxial cable for as long as several hundreds

meters.

In order to carry out this task, one needs to have the following knowledge:

1. overview of LatticeECP3 SERDES/PCS

2. overview of Lattice tri-rate SDI PHY IP core

3. overview of LT-125 Enciris board

4. implementation of the tri-rate SDI PHY IP core on the Enciris LT-125 board

I.1 Overview of Lattice ECP3 SERDES/PCS

The Lattice ECP3 FPGA family combines a high-performance FPGA fabric, high-performance

I/Os and up to 16 channels of embedded SERDES with associated Physical Coding Sublayer

(PCS) logic. The PCS logic can be configured to support numerous industry-standard, high-

speed serial data transfer protocols such as PCI Express, Gigabit Ethernet (1GbE and SGMII),

XAUI plus multiple other standards, and user-specified generic 8b10b mode.

Each channel of PCS logic contains dedicated transmit and receive SERDES for high-speed,

full-duplex serial data transfer at data rates up to 3.2 Gbps. The PCS logic in each channel can be

configured to support an array of popular data protocols including SD-SDI, HD-SDI and 3G-

SDI.

Lattice ECP3 FPGA devices have from one to four quads of embedded SERDES/PCS logic.

Each quad, in turn, supports four independent full-duplex data channels (RX and TX). A single

channel can support a data link and each quad can support up to four channels with both RX and

TX circuits, and an auxiliary channel that contains the TX PLL. The quad SERDES/PCS macro

performs the serialization and de-serialization function for four lanes of data.

Figure I.1 describes a simplified SERDES/PCS quad.

More detailed information about LatticeECP3 SERDES/PCS is provided in reference [1].

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

2

Figure I.1: SERDES/PCS Quad Block Diagram

I.2 Overview of Lattice tri-rate SDI PHY IP core

The Lattice Tri-Rate SDI (Serial Digital Interface) PHY (Physical Layer) IP (Intellectual

Property) core is a complete SDI PHY interface that connects to the high-speed SDI serial data

on one side (through LatticeECP3™ SERDES) and the formatted parallel video data on the other

side. For More detailed information of this IP core is provided in reference [2].

I.2.1 Lattice tri-rate SDI PHY IP core functional description

Lattice’s tri-rate SDI PHY IP core consists of the following major functional blocks: SDI

encoder/decoder, word alignment, CRC detection and checking, VPID (video payload identifier)

insertion and extraction, and rate detection logic. A block diagram of the SDI IP core is given

hereafter:

Figure I.2: Tri-Rate SDI PHY IP Core, High-Level Functional Diagram

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

3

For a full description of each functional block, please refer to reference [2].

I.2.2 Lattice tri-rate SDI PHY IP core features and applications

The Lattice tri-rate SDI PHY IP core features are:

- Dynamic reception of multiple interface standards over the same physical cable: 270

Mbps SD-SDI, 1.485 Gbps HD-SDI and 2.97 Gbps 3G-SDI interfaces

- Automatic Rx (receive) rate detection and dynamic Tx (transmit) rate selection

- Multiple SD source formats support: SMPTE 125M and SMPTE 267M (13.5 MHz only)

- Multiple HD source formats support: SMPTE 260M, SMPTE 274M, SMPTE 295M and

SMPTE 296M

- Support for 3G source formats, including 3G Level-B format: SMPTE 425M

- Word alignment and timing reference sequence (TRS) detection

- Field, vertical blanking (vblank) and horizontal blanking (hblank) timing signals

generation

- CRC computation, error checking and insertion for HD/3G

- Line number (LN) decoding and encoding for HD/3G

- Custom source format support for HD/3G

- Video Payload Identifier (VPID) insertion and extraction for HD/3G

- 10-bit parallel input/output support for SD

- Soft-logic based low data-rate (LDR) serializer for SD transmission.

This IP core enables faster development of applications for processing, storing, and bridging SDI

video data.

I.2.3 Tri-Rate SDI PHY IP pass-through demo

Above all, it is necessary to test the Lattice SDI IP core feature by implementing the pass-

through demonstration scheme on the Lattice evaluation board.

The Tri-Rate SDI PHY IP pass-through is demonstrated on the LatticeECP3 Video Protocol

Board (VPB) which is an evaluation board that has the LFE3-95E-7FN1156C FPGA on it. The

pass-through design is set up to receive video from a standard SDI source and re-transmit it

through the IP to a SDI monitor. The pass-through scheme is shown in Figure I.3.

Figure I.3: Pass-through scheme

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

4

The bitstream is uploaded on the FPGA device via JTAG connector. The JTAG connector is

shown in Table I.1. The Pin 4, Pin 5, Pin 9 and Pin 10 of JTAG connector are left open in order

to program the FPGA device.

The Tri-Rate SDI PHY IP pass-through sample design is shown in Figure I.4.

 Table I.1: JTAG connector

Figure I.4: Tri-Rate SDI PHY IP pass-through sample design

Notes:

- The Tri-Rate SDI PHY IP pass-through demo uses two data channels of SERDES quad

A: Channel0 and Channel1. Each data channel is configured for both RX and TX.

However, the Channel0 is used for TX only and the Channel1 is used for RX.

SDI Rx #1

SDI Tx #0

Power connector

12 V DC
JTAG connector

LED indicator

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

5

- Without IP core license, the IP core will be operational for approximately four hours after

initialization. After four hours, the device will stop working and it will be necessary to

reprogram the device to re-enable the operation.

- LED indicator displays the status of the SERDES and the video input.

I.3 Overview of Enciris LT-125 board

The LT-125 is a Lattice Semiconductor ECP3 FPGA based board for the evaluation of Enciris

Technologies’ HD and SD video compression and decompression IP. The LT-125 is designed to

demonstrate high performance H.264/AVC and VC-1 encoding and decoding in FPGA

applications. This board captures and compresses video from digital HD video sources via DVI,

3G/HD/SDI, HDMI connectors up to a video resolution of 1920x1080@60fps. Simultaneous

dual channel video capture is also possible up to a video resolution of 1920x1080@30fps per

channel. VC-1/SMPTE-421M is compressed at the advanced profile up to the level 3. H.264 is

compressed at the baseline profile up to the level 4.1. An HDMI bypass output is also available.

For more detailed information about this board, see references [3] and [4].

Figure I.5: LT-125 Overview

Figure I.6: Top view of the LT-125 Board

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

6

I.3.1 LT-125 board’s functional description

The LT-125 evaluation board includes video input and output connectors, a series of video input

equalizers and a level shifter, a Lattice ECP3-150 FPGA (LFE3-150EA-6FN1156C), DDR

memories, a Lattice XP2-8, a USB device controller, power management electronics and a USB

device controller. The various elements and their interconnections are shown in Figure I.7: LT-

125 block diagram.

Figure I.7: LT-125 block diagram

When high speed video signal passes through a cable, signal degradation occurs. The LT-125 is

equipped with input equalizers to restore video signal quality. ST Microelectronics TMDS

equalizers ICs are used for DVI and HDMI inputs. These devices are designed to handle video at

rates exceeding 1080p60 and also provide the necessary signal level shifting required by the

FPGA. A Gennum 3G-SDI input equalizer is used to assure SMPTE signal integrity. The HDMI

video output uses a ST Microelectronics TMDS level shifter as the FPGA output does not

provide the required HDMI levels directly.

The Lattice ECP3-150 FPGA has access to four Low Power Mobile DDRs. These are 32-bit

DDRs with a capacity of 256 Mbps each that operate at up to 133 MHz using Enciris

Technologies' proprietary video optimized DDR controller IP.

A Lattice XP2 FPGA is used to transfer packets of data (e.g. compressed, uncompressed video,

and parameters) to and from the USB device controller, and to provide the configuration

bitstream of Lattice EP3-150 FPGA. The configuration bitstream is uploaded from the host PC

via USB each time the board is used. This method allows for quick changes of configuration

without requiring the use of the JTAG port and a permanent ECP3 configuration device (i.e.

Flash memory). Typically, the Lattice ECP3-150 FPGA takes only a second or two to be

reconfigured.

I.3.2 LT-125 board’s features and applications

The most significant features of LT-125 board are:

- A platform for evaluating Enciris Technologies H.264 and VC-1 video compression and

decompression IPs.

- Uses a powerful Lattice ECP3 FPGA with 150 KLUTs for video processing.

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

7

- Equipped with an SMPTE 3G/HD/SD/SDI video input, a DVI single and dual link video

input, an HDMI video input, and an HDMI video output.

- FPGA configuration bitstream is uploaded directly via USB. JTAG is not required.

- Includes a PC-based application for Windows XP/Vista/7 32/64bit and Linux and Mac

OSX for quick evaluation and FPGA configuration bitstream.

- A simple SDK that includes DirectShow is available for developing custom applications

around the LT-125.

LT125 is used for many applications such as:

- HDTV capture and storage

- Video medical systems

- Video surveillance systems

- Internet broadcasting and teleconferencing.

I.3.3 DVI IN and HDMI OUT bypass demo of LT-125 board

In this section, the DVI IN and HDMI OUT bypass configuration demonstration on the LT-125

board is presented. Enciris uses three different software in the development flow of an FPGA:

Altium Designer, Synplify Pro and Lattice Diamond. Moreover, a proprietary Python executable

is used to generate and configuration the bitstream file. The flow of bitstream implementation on

LT-125 Enciris board are shown in Figure I.8.

Figure I.8: Flow of bitstream implementation

Altium Designer

Creation of the top level module Verilog file of the design.

Synplify Pro

Optimization of the Verilog code at a high level first, then synthesis of the RTL

code into specific FPGA logic.

Lattice Diamond

Code translation, mapping and placing and routing.

Python

Creation of the bitstream file, and provide the configuration bitstream.

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

8

The DVI IN and HDMI OUT bypass demo is shown in Figure I.9.

Figure I.9: DVI IN and HDMI OUT bypass demo

I.4 Implementation of the tri-rate SDI PHY IP core on the Enciris LT-125 board

In this section, the implementation of the SMPTE 3G/HD/SD/SDI video input functionality on

the Enciris LT-125 board by using the Lattice tri-rate SDI PHY IP core will be described. The

SDI scheme on the LT-125 board is shown in Figure I.10.

The SERDES block performs de-serialization outputting the parallel data to the tri-rate SDI IP

core. The IP core performs the rate detection in order to determine the SDI configuration of the

incoming video stream. Rate detection is performed by sequentially scanning the input for

different SDI standards: 270 Mbps SD-SDI, 1.485 Gbps HD-SDI and 2.97 Gbps 3G-SDI

interfaces. If the incoming video stream matches one of the SDI standards, the SDI IP core

receiver locks to this video stream by asserting the vid_active signal, and outputs the 20-bit SD

parallel data with format 4:2:2 and other control signals such as field, vblank, hblank, frame

format and video format.

The Sync-signals block, SDI 422 to 444 block and YCrCb to RGB converter block are used to

convert SD parallel data to HDMI format.

The Cross-bar switch module multiplexes the video inputs to the various processing units. Note

that at most two out of the three video inputs can be encoded in parallel while one input is

bypassed.

The HDMI Bypass module forwards the incoming video without any further processing to the

HDMI output.

DVI IN

HDMI OUT

Power connector

1.5 V DC

USB connector to

host PC

LED indicator

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

9

Figure I.10: SDI scheme on the LT-125 board

The tri-rate SDI PHY IP core demonstration setting on the Enciris LT-125 board design is shown

in Figure I.11.

Figure I.11: Tri-rate SDI PHY IP core on LT-125 Enciris board design

SDI IN

HDMI OUT

Power connector

1.5 V DC

USB connector to

host PC

LED indicator

PHOR VICHEKA PART I CHAPTER I
MASTER CAMSI 2 IMPLEMENTATION OF LATTICE TRI-RATE

 SERIAL DIGITAL INTERFACE PHY IP CORE

10

I.5 Conclusion

At the end of this chapter, we have achieved our goal on the implementation of this IP core on

the Enciris LT-125 board, provided an SMPTE 3G/HD/SD SDI video input functionality on the

board, by understanding the LatticeECP3 SERDES/PCS, the Lattice tri-rate SDI PHY IP core,

the LT-125 Enciris board, and particularly the Tri-Rate SDI PHY IP pass-through sample design

on lattice board and DVI IN and HDMI OUT bypass demo on LT-125 board.

PART II

CHAPTER II
“H.264/AVC BITSTREAM DECODER”

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

11

CHAPTER II

“H.264/AVC BITSTREAM DECODER”

H.264/AVC is the newest and the most popular video compression/decompression standard of the

ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. Compared

to previous coding standards, it is able to deliver higher video quality for a given compression

ratio, and better compression ratio for the same video quality. In other words, it allows reducing

the required storage space while maintaining video quality.

This chapter will present:

 overview of video processing

 overview of H.264/AVC decoder

 H.264/AVC parameters - profile and level

 H.264/AVC bitstream decoder

II.1 Overview of video processing

This section presents the sufficient background information underlying the context and

significance of digital video processing algorithms.

Digital image is a 2-D signal which is composed of very small picture elements called pixels.

Pixel is a small rectangular area which has a uniform intensity value. A higher visual quality is

achieved with more pixels on the image. Pixel information can be coded using the fundamental

colors in RGB (red, green and blue) color space or using luminance and chrominance in the YCbCr

color space: luminance (Y), chrominance blue (Cb) and chrominance red (Cr). The human eye is

less sensitive to color information than luminous information, thus video systems usually represent

the pixel information using YCbCr color space because it facilitates the subsampling of color

information when compared to RGB. Pixels represented in the YCbCr color space can be

subsampled in order to reduce the information needed to store an image by up to 50%. High quality

pictures are represented in 4:4:4 format, while 4:2:0 is used in video systems to compress images

by a factor of 2 with a 4:1 subsampling on each chrominance component.

Video is a sequence of images. Each image is called frame and each frame has equal displaying

time. Increasing capture and exhibition rates of video images (frames per second) leads a sensation

of real motion.

Each frame is decomposed into two fields:

- Even Field: includes the even rows of the frame

- Odd Field: includes the odd rows of the frame

There are two types of scanned fields:

- Progressive scanned field: the even and odd fields are captured at the same time

- Interlaced scanned field: the even and the odd fields are captured at different times

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

12

Figure II.1: Interlaced vs progressive scan

Each Frame is segmented into blocks of pixels. Most common regions of pixels used in image

processing are: 4×4, 8×8, 8×16, 16×8 and 16×16 pixels. The blocks of pixels is called a

macroblock of pixel samples, or simply macroblock. A group of macroblocks is called a slice. For

example, a 16x16 Macroblock (MB) represented in YCbCr 4:2:0 consists of:

- 256 luminance Y pixels or one 16×16 macroblock in Y component which is composed

of sixteen 4x4 sub-macroblocks in Y component

- 64 chroma Cb pixels or one 8×8 macroblock in Cb component which is composed of
four 4x4 sub-macroblocks in Cb component

- 64 chroma Cr pixels or one 8×8 macroblock in Cr component which is composed of
four 4x4 sub-macroblocks in Cr component

Figure II.2: Pixel array organization in a macroblock of 16x16 pixels

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

13

II.2 Overview of H.264/AVC decoder

The amount of raw video information to display on a high definition television screen is too big to

be transmitted or stored at a reasonable cost. For that reason, we need a codec (encoder/decoder)

pair to allow the video compression, maintaining image quality and reducing the amount of data.

The encoder converts the source information in a compressed form before being transmitted or

stored, and the decoder is responsible to convert the compressed information in video information

again. The decoder has mechanisms to reconstruct the video content based on parameters sent by

the encoder.

H.264/AVC encoding algorithm, which is the newest and the most popular video

compression/decompression algorithm, was conceived to explore redundancies between

successive frames and between blocks within a frame, using inter and intra frame prediction, a

DCT-based transform, a quantization, deblocking filter and an entropy encoder mechanism to

compress video data. [7] The decoding process in H.264/AVC which is the inverse process of

encoder is shown in the Figure II.3.

Figure II.3: H.264/AVC decoder

The compressed video bitstream is received in the video decoder within the Network Abstraction

Layer (NAL) unit.

The entropy decoder or bitstream decoder contains a parser that receives a compressed video

bitstream in the input from the NAL and decodes the quantized coefficients to generate the residual

data. Also, it extracts the syntax elements to inter-frame and intra-frame prediction processes. The

residual data is decoded using fixed or variable length binary codes in one of the entropy decoders:

Exp-Golomb, CAVLD or CABAD decoder.

The residual data is then processed in the Inverse Transform and Inverse Quantization (IT and IQ)

steps. Using information decoded from the bitstream, the decoder creates a prediction block or

decoded residual block after the IT and IQ processing.

The H.264 Standard adopts two modes of block prediction: intra and inter prediction. Inter

prediction refers to the reuse of information previously decoded frames stored in the decoded

Decoded Residual

data

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

14

picture buffer to predict current frame. Intra prediction reconstructs each image block from its

previous coded block.

Finally, the decoded residual block is added to the predicted blocks of pixels, generating the pixel

output that is filtered by the deblocking filter, smoothing block edges and improving the

appearance of displayed images before exhibition.

II.3 H.264/AVC parameters - profile and level

The H.264/AVC encoder/decoder’s capabilities is specified by a profile and level. A profile

defines a set of coding tools or algorithms that can be used in generating a conforming bitstream,

whereas a level places constraints on certain key parameters of the bitstream. In other words, a

profile defines specific encoding techniques that you can or can't utilize when encoding the files

(such as B-frames), while the level defines details such as the maximum resolutions and data rates.

The profiles is categorized in to 4 main classes: constrained baseline profile, baseline profile, main

profile and extended profile as shown in Figure II.4. The higher profiles provides more

functionalities hence the better quality but increasing both decoding complexity and encoding

time.

Figure II.4: H.264/AVC profiles

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

15

Table II.1: H.264/AVC levels

II.4 H.264/AVC bitstream decoder

II.4.1 H.264/AVC bitstream format

Obviously, the decoder operates with a sequence of bits received in a specific format. The byte

stream format puts a synchronization byte sequence (0×00000001) before every NAL (Network

Abstraction Layer) unit packet, as shown in Figure II.5.

Figure II.5: NAL packets structure

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

16

The first byte of a NAL unit packet is a header that contains information about the type of NAL

packet which is shown in Table II.2. As can be seen from the Figure II.5, the payload of NAL

packet identified as RBSP (Raw Byte Sequence Payload). RBSP describes a row of bits specified

order of SODB (String Of Data Bits).

 Table II.2: NAL types

Type

(5 bits LSB of the first

byte in a NAL packet)

Definition

0 Undefined

1 Non-IDR slice

2 Slice data partition A layer

3 Slice data partition B layer

4 Slice data partition C layer

5 IDR slice

6 Additional information (SEI)

7 Sequence parameter set

8 Picture parameter set

9 Access unit delimiter

10 End of sequence

11 End of stream

12 Filler data

13..23 Reserved

24..31 Undefined

The detailed H.264 data stream is shown in Figure II.6.

Figure II.6: Detailed H.264 data stream

VCL NAL units

Skip indication

Start code
(Byte sequence:
0×00000001)

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

17

The Network Abstraction Layer (NAL) consists of a series of NAL units: SPS, PPS, IDR, and

SLICEs. Sequence Parameter Sets (SPS) and Picture Parameter Sets (PPS) are NAL units that

signal certain common control parameters to the decoder. For instance, a Sequence Parameter Set

(SPS) contains parameters that are applied to a complete video sequence such as: the picture order

count, decoded picture width and height and the choice of progressive or interlaced (frame or

frame/field) coding. A Picture Parameter Set (PPS) contains parameters that are applied to the

current decoded picture such as: an picture identifier, a flag to select CAVLD or CABAD entropy

decoding; the number of reference pictures in list 0 and list 1 that may be used for prediction,

initial quantized parameters among others.

A coded video sequence begins with an Instantaneous Decoder Refresh (IDR) access unit, made

up of one or more IDR slices, a special type of Intra coded slice. Subsequent video frames or fields,

described as Access Units, are coded as slices. The video sequence ends when a new IDR slice is

received, signaling a new coded sequence, or when the transmission is complete.

Coded video data is communicated in Video Coding Layer (VCL) NAL units, known as coded

slices. An access unit, a coded frame or field, is made up of one or more slices. At the slice layer,

each slice consists of a Slice Header and Slice Data. The Slice Data is a series of coded

macroblocks (MB) and skip macroblock indicators which signal that certain macroblock positions

contain no data. Each coded macroblock contains the following syntax elements [5]:

 Macroblock header

o MB type: I/intra coded, P/inter coded from one reference frame, B/inter coded from

one or two reference frames.

o Prediction information: prediction mode(s) for an I macroblock, choice of reference

frame(s) and motion vectors for a P or B macroblock.

o Coded Block Pattern (CBP): indicates which luma (Y) and chroma (Cb, Cr) blocks

contain non-zero residual coefficients.

o Quantization Parameter (QP), for macroblocks with CBP ≠ 0.

 Macroblock data or Residual data, for blocks containing non-zero residual coefficients.

II.4.2 Coding

A coded H.264 stream or an H.264 file consists of a series of coded symbols. In H.264/AVC

standard, the entropy decoder or bitstream decoder contains several methods for decoding the

coded symbols to generate the residual data. These methods are as follows [5]:

 Fixed length decoding: a symbol is extracted from a binary code with a specified fixed

length (n bits).

 Exponential-Golomb variable length decoding: a symbol is extracted from a binary

code with a varying number of bits (v bits). In general, at encoder side, shorter Exp-

Golomb codewords are assigned to symbols that occur more frequently.

 CAVLD: Context-Adaptive Variable Length Decoding, a specially-designed method of

decoding transform coefficients in which different sets of variable-length codes are

extracted depending on the statistics of recently-coded coefficients, using context

adaptation.

 CABAD: Context-Adaptive Binary Arithmetic Decoding, a method of arithmetic

decoding in which the probability models are updated based on previous coding

statistics.

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

18

Syntax elements/data occurring in the bitstream/syntax above the slice data level are decoded using

Fixed Length decoding or Exp-Golomb decoding. Syntax elements/data at the slice data level and

below are decoded using CAVLD or CABAD decoding. The Exp-Golomb decoding and CAVLD

will be described further in the following sections.

II.4.2.1 Exp-Golomb decoding

Exp-Golomb decoding uses smaller codeword length for frequently occurring data and larger

codeword length for less frequently occurrences. As a result, the average codeword length is

reduced and higher compression is achieved. An Exp-Golomb codeword has the following

structure: [M zero] [1] [INFO], where M denotes the number of leading zero and INFO denotes

an M-bit field of information. Table II.3 and Table II.4 list the first few signed Exp-Golomb

codewords and unsigned Exp-Golomb codewords respectively.

 Table II.3: Signed Exp-Golomb codewords

code_num Codeword

0 1

1 010

2 011

3 00100

4 00101

5 00110

6 00111

7 0001000

8 0001001

... ...

 Table II.4: Unsigned Exp-Golomb codewords

code_num Codeword

0 1

1 010

-1 011

2 00100

-2 00101

3 00110

-3 00111

4 0001000

-4 0001001

... ...

II.4.2.2 Context-Adaptive Variable Length Decoding, CAVLD

Context-Adaptive Variable Length Decoding (CAVLD) is the inverse process of CAVLC, or a type

of run length decoding, where the number of zeros is increased or reconstructed by a run length

parameter that is transmitted by CAVLC. The algorithm CAVLC provides better efficiency but

increasing decoding complexity in compression. During video compression, many video

coefficients become zero after the quantization step, which is termed a run of zeros. Instead of

encoding each zero into the video compression stream, run length compression is used, where the

run length of the zeros is encoded to increase the overall compression efficiency.

CAVLC is designed to take advantage of several characteristics of quantized 4x4 blocks [5]:

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

19

 After prediction, transformation and quantization, blocks are typically sparse (containing

mostly zeros).

 The highest non-zero coefficients after zig-zag scan are often sequences of +/- 1. CAVLC

signals the number of high-frequency +/-1 coefficients in a compact way.

 The number of non-zero coefficients in neighboring blocks is correlated. The number of

coefficients is decoded using a look-up table; the choice of look-up table depends on the

number of non-zero coefficients in neighboring blocks.

 The level (magnitude) of non-zero coefficients tends to be higher at the start of the reordered

array (near the DC coefficient) and lower towards the higher frequencies. CAVLC takes

advantage of this by adapting the choice of VLC look-up table for the “level” parameter

depending on recently coded level magnitudes.

Figure II.7 shows the flowchart for CAVLC codec: (a) Decoder and (b) Encoder. Table II.5

describes CAVLC/CAVLD decoder syntax elements. Table II.6 indicates the choice of look-up

table for coeff_token.

Figure II.7: Flowchart for CAVLC codec: (a) Decoder and (b) Encoder

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

20

 Table II.5: CAVLC/CAVLD decoder syntax elements

Syntax Elements Description

nC the parameter to choose the look-up table for coeff_token

coeff_token the number of all non-zero coefficients (TotalCoeff) and the number

of trailing ones (T1s) are encoded by this syntax element

trailing_ones_sign_flag the sign bit of each T1 is reverse zig-zag scan order is encoded by
this syntax element

level The value of each non-zero coefficient (except for T1s) is encoded by

this syntax element

total zeros The total number of zero coefficients preceding the last non-zero
coefficients in zig-zag order is encoded by this syntax element

run before The number of successive zero coefficients following the non-zero

coefficients in reverse zig-zag order.

 Table II.6: Choice of look-up table for coeff_token

In the following examples, we assume that table Num-VLC0 [6] is used to encode coeff_token.

0,3,0,1,-1,-1,0,1,0…

TotalCoeffs = 5, indexed from highest frequency (4) to lowest frequency (0)

TotalZeros = 3

T1s = 3 (in fact there are 4 trailing ones but only 3 can be encoded as a “special case”)

Encoding:

Element Value Code

coeff_token TotalCoeffs = 5, T1s = 3 0000100

T1 sign (4) + 0

T1 sign (3) - 1

T1 sign (2) - 1

Level (1) +1 (use Level_VLC0) 1

Level (0) +3 (use Level_VLC1) 0010

TotalZeros 3 111

run_before(4) ZerosLeft = 3; run_before = 1 10

run_before(3) ZerosLeft = 2; run_before = 0 1

run_before(2) ZerosLeft = 2; run_before = 0 1

run_before(1) ZerosLeft = 2; run_before = 1 01

run_before(0) ZerosLeft = 1; run_before = 1 No code required; last coefficient.

The transmitted bitstream for this block is 000010001110010111101101.

http://en.wikipedia.org/wiki/File:4x4CAVLC.svg

PHOR VICHEKA PART II CHAPTER II
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER

21

Decoding: The output array is “built up” from the decoded values as shown below. Values added

to the output array at each stage are underlined.

Code Element Value Output array

0000100 coeff_token TotalCoeffs = 5, T1s = 3 Empty

0 T1 sign + 1

1 T1 sign - -1, 1

1 T1 sign - -1, -1, 1

1 Level +1 1, -1, -1, 1

0010 Level +3 3, 1, -1, -1, 1

111 TotalZeros 3 3, 1, -1, -1, 1

10 run_before 1 3, 1, -1, -1, 0, 1

1 run_before 0 3, 1, -1, -1, 0, 1

1 run_before 0 3, 1, -1, -1, 0, 1

01 run_before 1 3, 0, 1, -1, -1, 0, 1

The decoder has inserted two zeros; however, TotalZeros is equal to 3 and so another 1 zero is

inserted before the lowest coefficient, making the final output array: 0, 3, 0, 1, -1, -1, 0, 1. After

reconstruction a 4x4 block, we get the sixteen coefficients: 0, 3, 0, 1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0.

CHAPTER III
“H.264/AVC BITSTREAM DECODER HARDWARE

DESIGN IN VERILOG MODELS”

PHOR VICHEKA PART II CHAPTER III
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER HARDWARE

 DESIGN IN VERILOG MODELS

22

CHAPTER III

“H.264/AVC BITSTREAM DECODER HARDWARE DESIGN IN

VERILOG MODELS”

The bitstream decoder or entropy decoder is a block that handles the compressed video bitstream

within the video decoder. The bitstream decoder is required to process the input bitstream, identify

syntactic elements and route the associated data to the appropriate decoder module, like the inter-

frame or the intra-frame prediction blocks.

This chapter will describe about:

 bitstream decoder hardware architecture

 tools used in the FPGA development flow design

 hardware implementation and results

III.1 Bitstream decoder hardware architecture

The H.264 decoder which is going to be designed can support the constrained baseline profile,

level at 4 (video format 1080 HD and resolution 1920x1088 pixels). The implemented hardware

architecture for the bitstream decoder corresponding to this decoder is presented in Figure III.1.

Figure III.1: Bitstream decoder hardware architecture

PHOR VICHEKA PART II CHAPTER III
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER HARDWARE

 DESIGN IN VERILOG MODELS

23

III.1.1 Flowchart of bitstream decoder

The bitstream decoder is the first processing step of decoder and it is a highly sequential process.

As shown in Figure III.2, the compressed video bitstream is decoded as the following steps:

1. Detect the start code and decode NAL type: the byte sequence (0×00000001) and the first

byte of the NAL packet

2.

 if the NAL type is SPS (5 bits of the first byte in a NAL packet = 7) , decode SPS layer

 if the NAL type is PPS (5 bits of the first byte in a NAL packet = 8), decode PPS layer

 if the NAL type is IDR slice or Non-IDR slice (5 bits of the first byte in a NAL packet =

1 or 5), decode:

a) Slice header

b) Macroblock header

c) Macroblock data

3. Send the decoded bitstream (residual data, and syntactic elements) to the appropriate

decode module for further processing

4. Restart step 1 until the end of video bitstream.

Figure III.2: Flowchart of bitstream decoder

PHOR VICHEKA PART II CHAPTER III
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER HARDWARE

 DESIGN IN VERILOG MODELS

24

III.1.2 Functionalities of each module

As shown in Figure III.1, the functionalities of each module are as follow:

 Master state machine: outputs the controlled signals to activate the modules for decoding the

corresponded layer.

 Start code detector: reads byte by bytes from video bitstream, detects the start code (byte

sequence 0×00000001), decodes NAL type (5 bits of the first byte in a NAL packet), and

outputs the data one byte each cycle to the FIFO in bit buffer module starting from the first

byte of NAL packet (excluded).

 Bit buffer: this module outputs the data which is decoded using whether fixed length decoding,

Exp-Golomb, or CAVLD and it contains the following sub-modules:

 FIFO: stores the output data from the Start code detector module

 Bytes buffer: stores bytes from FIFO, aligns buffer position by shifting the bytes that has

been decoded

 FLC buffer: stores bytes from Bytes buffer, aligns buffer position by shifting the bits that

has been decoded, is used for fixed length decoding

 VLC buffer: stores bytes from Bytes buffer, aligns buffer position by shifting the bits that

has been decoded, is used for Exp-Golomb decoding and CAVLD decoding

 Fixed length decoding: decodes the syntax elements that is encode in fixed length code

 Exp-Golomb decoding: decodes the syntax elements that is encode in Exp-Golomb code

 CAVLD decoding: decodes the syntax elements that is encode in CAVLC code

 Bit buffer interface: is the multiplexer between the threes decoding: fixed length decoding,

Exp-Golomb, or CAVLD.

 SPS decoder: decodes the syntax elements in sequence parameter set layer, outputs the

decoded data such as: the picture order count, decoded picture width and height and the choice

of progressive or interlaced (frame or frame/field) coding to the appropriate decoder module.

 PPS decoder: decodes the syntax elements in picture parameter set layer, outputs the decoded

data such as: an picture identifier, a flag to select CAVLD or CABAD entropy decoding; the

number of reference pictures in list 0 and list 1 that may be used for prediction, and initial

quantized parameters to the appropriate decoder module.

 Slice header decoder: decodes the syntax elements in slice header layer, outputs the decoded

data such as: slice type, frame number, picture order count type, and slice QP data to the

appropriate decoder module (ex. macroblock header decoder module).

 Macroblock header decoder: decodes the syntax elements in macroblock header layer, outputs

the decoded data such as: macroblock type, code block pattern, and prediction mode to the

appropriate decoder module (ex. macroblock data decoder module).

 Macroblock data decoder: decodes the data elements or residual data in macroblock data

layer, outputs the residue coefficients to the appropriate decoder module (ex. IT/IQ module).

Syntax elements/data occurring in the bitstream/syntax at SPS, PPS, Slice header and Macroblock

header layer are decoded using Fixed Length decoding or Exp-Golomb decoding. Syntax

elements/data at Macroblock data layer are decoded using CAVLD decoding.

PHOR VICHEKA PART II CHAPTER III
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER HARDWARE

 DESIGN IN VERILOG MODELS

25

III.2 References models and tools used in the FPGA development flow design

The references models that are used for helping understanding and coding H.264 hardware decoder

are:

1. Joint Model (JM) ITU-T H.264 encoder and decoder model in C code as Microsoft visual

studio project [8]

2. Enciris H.264 encoder model in C code as Microsoft visual studio project

3. Enciris VC1 decoder hardware model as Altium project

4. Nova Verilog H.264 decoder model [9]

The tools that are used in the FPGA development flow design are:

1. Notepad++ : to create and edit the source codes

2. Altium designer: to compile the source codes and to create top level Verilog files

3. ActiveHDL: to do the simulation of Verilog files and verify the results

4. Python: to create CAVLD ROM table file in .mem for IP Express diamond which generates

the CAVLD ROM table in Verilog file

5. Microsoft visual studio, Joint Model (JM) ITU-T H.264 encoder and decoder model in C

code project: to create the trace file .txt of decoder

6. Beyond Compare: to compare and verify the results between the trace file created by the

simulation in ActiveHDL and the trace file created by JM ITU-T C code model project

7. Diamond 3.1: to do the synthesize design, map design, place and route design

Figure III.3: Tools used in the implementation

PHOR VICHEKA PART II CHAPTER III
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER HARDWARE

 DESIGN IN VERILOG MODELS

26

III.3 Hardware Implementation

For the time being, the bitstream decoder is not completely implemented yet. Because of lacking

time and because of the complexity of CAVLD decoding, the CAVLD decoding is not completely

coded yet so that the bitstream decoder at the present can decode only the SPS, PPS, Slice header,

and Macroblock header layer. And, each layer was decoded by the corresponding module which

is coded as a state machine because the video stream input is a serial data and some syntax elements

and data elements is encoded in variable length codes, Exp-Golomb code and CAVLD code. The

following sections demonstrates how to implement the Exp-Golomb decoding and CAVLD

decoding.

III.3.1 Implementation of Exp-Golomb decoding

As shown in Figure III.4, the code_num is decoded as follows:

1. Read a series of consecutive zeros until a 1 is detected. Count the number of zeros (M).

2. Read {[1], [M bits INFO]}.

3.

 For unsigned Exp-Golomb codewords:

code_num = {[1], [M bits INFO]} - 1

 For signed Exp-Golomb codewords:

- Read the Least Significant Bit (LSB) of {[1], [M bits INFO]}

o If the LSB of {[1], [M bits INFO]} is equal to zero (positive number), then:

code_num = {[1], [M bits INFO]} / 2

o If the LSB of {[1], [M bits INFO]} is equal to one (negative number), then:

code_num = Two’s Complement of ({[1], [M bits INFO]} / 2)

Figure III.4: Implementation of Exp-Golomb decoding

III.3.2 CAVLD decoding

In order to design the sub-module CAVLD decoding, the look-up table or ROM table is needed

because many parameter in CAVLD decoding such as: coeff_token, total zeros, and run before used

look-up table.

Decode zeros prefix length

(M)

Read {[1], [M bits INFO]}

Decode code_num

Example: the input data is 0010010101…

1. zeros prefix length (M) = 2d

2. {[1], [M bits INFO]} = 100b

3.

 Unsigned Exp-Golomb codewords:

code_num = 100b – 1b = 011b

 Signed Exp-Golomb codewords:

LSB = 0

code_num = 100b > 1 = 010b

Input data

PHOR VICHEKA PART II CHAPTER III
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER HARDWARE

 DESIGN IN VERILOG MODELS

27

The look-up table is created by using the method table partitioning, called Node-Leaf method.

Figure III.5 shows the Node-Leaf method algorithm.

Figure III.5: Node-Leaf method algorithm

The Node-Leaf method algorithm with N bits partitioning processes as the following:

- Reading N bits of input data. These N bits are processed in the initial Table/Node (for

example Table/Node 0). If these N bits are a node (not the LSB bits of input data), these

N bits indicate the next look-up Table/Node (for example Table/Node K) and the

process continues to read the next N bits of input data which are processed in the

corresponding Table/Node (for example Table/Node K) addressed by the previous N

bits of input data. Otherwise, it will output the corresponding data in the look-up

Table/Node.

Example: With the input data is 00000011 and the look-up table of total_zeros shown in Figure

III.6, the Node-Leaf method algorithm with 3 bits partitioning processes as follow:

1. 1st step: reading 3 bits of input data, we got 000 bits. These 3 bits (000 bits) are a node

and it addresses the next look-up table or node: Node 1.

2. 2nd step: reading next 3 bits of input data, we got 000 bits which is looked up in the

Table/Node 1. These 3 bits (000 bits) are a node and it addresses the next look-up table or

node: Node 2.

3. 3rd step: reading next 3 bits of input data, we got 11X bits which is looked up in the

Table/Node 2. These 3 bits (11X bits) are a leaf (not a node), so the output data with

corresponding to these 3 bits (11X bits) are the value 11 in decimal.

PHOR VICHEKA PART II CHAPTER III
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER HARDWARE

 DESIGN IN VERILOG MODELS

28

Figure III.6: Look-up table of total_zeros

The detail of the implementation of CAVLD decoding is provided in reference [6].

III.4 Results

The simulation results of the implementation is obtained by the simulation the design in

ActiveHDL with the two modules of test bench added: tb_clock module to generate signal clock

and reset; tb_read_bitstream module to read one byte from file (file .264) providing the video

bitstream to the bitstream decoder module (bsd module).

Figure III.7: Top-level test bench block schematics of bitstream decoder in Altium designer

PHOR VICHEKA PART II CHAPTER III
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER HARDWARE

 DESIGN IN VERILOG MODELS

29

The Figure III.8 shows the implementation in ActiveHDL. The results is verified by the simulation

chronograms and the output file of the simulation verilog_trace.txt.

Figure III.8: Simulation results in ActiveHDL

The Figure III.9 shows the trace file created by the simulation in ActiveHDL and the trace file

created by Joint Model (JM) ITU-T H.264 encoder and decoder C code model.

Figure III.9: Trace file created by the simulation in ActiveHDL and the trace file created by JM

ITU-T C code model project

Trace file created by
AtiveHDL

Trace file created by
JM ITU-T C code

PHOR VICHEKA PART II CHAPTER III
MASTER CAMSI 2 H.264/AVC BITSTREAM DECODER HARDWARE

 DESIGN IN VERILOG MODELS

30

Without the CAVLD decoding and the Macroblock data decode, the synthesize design, map design,

place and route design in Diamond 3.1 on the Lattice FPGA device - LFE3-150EA-6FN1156C

show that our design can run on the maximum frequency of 198.334 MHz with the clock constraint

of 150 MHz. And, the resource FPGA used in the design is shown in Table III.1.

 Table III.1: Resources FPGA used in the design

Number of registers: 468 out of 115296 (0 %)

Number of SLICEs: 535 out of 74520 (1 %)

Number of LUT4s: 852 out of 149040 (1 %)

The Figure III.10 shows the CAVLD ROM table file in .mem generated by the python source codes.

The IP Express diamond will use this .mem file to generate the CAVLD ROM table in Verilog (.v)

file, as shown in Figure III.11.

Figure III.10: CAVLD ROM table file in .mem generated by the python source codes

Figure III.11: Lattice FPGA module – ROM in IP Express diamond

CONCLUSION

In this master thesis, chapter I described the first part of my work during the internship. It was

devoted to a description of the SDI video interface and the demonstration of the implementation

of a Lattice tri-rate SDI PHY IP core on a Lattice FPGA embedded in the Enciris LT-125 board.

Chapter I provides a quite large amount of information about the high data-rate SERDES/PCS

interface of Lattice ECP3 FPGAs, the Lattice tri-rate SDI PHY IP core, and the Enciris LT-125

board. The most interesting aspect in that task was due to the complexity of both the

SERDES/PCS interface and the Lattice tri-rate SDI PHY IP core: configuration and generation

of the related IP cores were really subtle and sometimes mind-boggling. However, the Lattice

SDI IP core was successfully implemented on the Enciris LT-125 board, which now possesses an

SMPTE 3G/HD/SD SDI video input functionality. This met the technical needs of the company

who had not yet had any boards which support an SDI video input functionality by incorporating

with the Lattice SDI IP core.

The second part of my internship is focused on the hardware architecture design and

implementation of an H.264/AVC bitstream decoder (BSD) which was specifically dealt with in

the subsequent chapters. The CAVLD decoder was actually the most challenging module. I

successfully managed to design the bitstream decoder which can handle the decoding of SPS,

PPS, Slice header, and Macroblock header layers of the bitstream, as well as the CAVLD

decoding of some 4x4-block fields by using the VLC tree table method (Node-Leaf method). The

preliminary synthesis of the design yields a maximum operating frequency of 198.334 MHz on a

Lattice LFE3-150EA-6FN1156C FPGA device with a clock frequency constraint of 150 MHz.

In the near future, the bitstream decoder will be completed by adding the finalized CAVLD

decoding sub-module, and the macroblock data decoder module. Afterwards, the IT/IQ, intra

prediction and inter prediction modules will need to be designed and integrated in order to form

the H.264/AVC decoder. The purpose is to develop a commercial high data-rate (about 50-100

Mbps) H.264 1080p-P30 decoder compliant with the Constrained Baseline Profile, and level 4.

Throughout my internship, several technical and scientific aspects were covered:

First of all, I discovered and dug into the amazing world of advanced video coding/decoding

with its lengthy standards and elaborate video processing algorithms. Second, I have gone

through an entire FPGA development cycle (HDL code design, functional simulation, testing,

and full-scale validation) which helped me understand and practice the full scope and the

innumerable difficulties of FPGA hardware design, development and implementation, in a real-

life industrial context. Hence, I was naturally led to use a variety of software tools for FPGA

design such as: Diamond, IPexpress, Altium Designer, Python, etc. It is worthy to note that due

to the Enciris statement of work I was also forced to learn from scratch the Verilog HDL

modelling and programming language, which I find offers more flexibility and potentialities than

VHDL. Finally, my work allowed me to better grasp the stakes of embedded electronic system

development with highly constrained operating and computational performance specifications. It

was a great experience: I much enjoyed the work of an R&D electrical engineer, the supreme

reward being the satisfaction of seeing my design work in a full scale commercial product, which

supplies the bridge between theoretical training and industrial achievements. I am grateful to

Enciris for having accepted to let me participate in this great technological and personal venture.

REFERENCES

[1] LatticeECP3 SERDES_PCS Usage Guide.pdf

[2] Tri-Rate Serial Digital Interface Physical Layer IP Core User’s Guide.pdf

[3] Model LT-125 USER MANUAL.pdf

[4] Schematic_LT-125-REV0-ASSY0.pdf

[5] IAIN E. Richardson. H.264 and MPEG-4 Video Compression. John Wily and Sons Ltd.,

England, 2003.

[6] ITU-T (2005). ITU-T Recommendation H.264- H.264 telecommunication standardization

sector of itu (03/2005) series h: audiovisual and multimedia systems Infrastructure of

audiovisual services – Coding of moving video Advanced video coding for generic

audiovisual services

[7] Alexsandro C. Bonatto, Henrique A. Klein, Marcelo Negreiros, André B. Soares, Letícia

V. Guimarães and Altamiro A. Susin. Hardware Decoding Architecture for H.264/AVC

Digital Video Standard. Department of Electrical Engineering Federal University of Rio

Grande do Sul, Brazil.

[8] Ke Xu. nova: a H.264/AVC Baseline Decoder Specification. OpenCores.Org, 2014.

[9] JM 18.6 (2014). H.264/AVC Software Coordination. Available at:

http://iphome.hhi.de/suehring/tml/download/

Student name: Mr. Vicheka PHOR

Department: CAMSI

Academic year: 2013-2014

Company: Enciris Technologies Company

Title of internship: “Video decoding: SDI interface implementation & H.264/AVC bitstream

decoder hardware architecture design and implementation”

Internship duration: 5 months and a half

REPORT SUMMARY

Nowadays, digital video is widely used in many applications in the way of creating or sharing for

example the digital television broadcasting, internet video streaming, mobile video streaming,

DVD video and video calling application. Therefore, effective video coding is an essential

component of these applications and can make the difference between the success and failure of

a business model. The video coding is the process of compressing and decompressing a digital

video signal which is sent/received by various interfaces such as: SD-SDI, HD-SDI, 3G-SDI,

DVI and HDMI. There are many methods or algorithms to compress and decompress digital

video such as: VC1, H.262/MPEG-2, H.263/MPEG-4, and H.264/AVC algorithm. Among these

video coding algorithms, H.264/AVC has huge significance to the broadcast, internet, consumer

electronics, mobile and security industries application. Also, H.264/AVC is the latest in a series

of standards published by the ITU and ISO. It describes and defines a method of coding video

that can give better performance than any of the preceding standards. H.264/AVC makes it

possible to compress video into a smaller space, which means that a compressed video clip takes

up less transmission bandwidth and/or less storage space compared to older codecs.

This master thesis was organized in two parts:

 The first part which is composed of one chapter: Chapter I, studied about the SDI video

interface by demonstrating the implementation of a Lattice tri-rate SDI PHY IP core on a

Lattice FPGA of the Enciris LT-125 board in order to provide an SMPTE 3G/HD/SD

SDI video input functionality on the board without using any external chipset like the

Gennum chipset which is used today on Enciris boards.

 The second part which contains two chapters: Chapter II and Chapter III, described about

the H.264/AVC video decoding algorithm, particularly the H.264/AVC bitstream decoder

hardware architecture design and implementation.

In the first part of this master thesis, I have successfully implemented a Lattice tri-rate SDI PHY

IP core on the Enciris LT-125 board, provided an SMPTE 3G/HD/SD SDI video input

functionality on the board that met the technical needs of the company. As for the second part,

the implementation of bitstream decoder is not totally completed yet because of lacking time and

the complexity of CAVLD decoding. Somehow, I successfully managed to design the bitstream

decoder which can handle the decoding of SPS, PPS, Slice header, and Macroblock header layers

of the bitstream, as well as the CAVLD decoding of some 4x4-block fields by using the VLC

tree table method (Node-Leaf method). The preliminary synthesis of the design yields a

maximum operating frequency of 198.334 MHz on a Lattice LFE3-150EA-6FN1156C FPGA

device with a clock frequency constraint of 150 MHz.

