

Nanosatellites: état de l'art, éléments de conception et simulations

21 septembre 2011 ENSEEIHT, Toulouse

Etudiant : M. Vicheka PHOR

Maître de stage : M. Ponia PECH

Lieu du stage : TéSA

Année scolaire : 2010-2011

I. Introduction

- I.1 Présentation de TéSA
- I.2 Objectif du stage et travail réalisé

II. Contexte

- II.1 Définition et naissance des nanosatellites
- II.2 Caractéristiques des nanosatellites
- II.3 Pourquoi les nanosatellites?

III. Etudes théoriques et simulations

- III.1 Procédure
- III.2 Mécanique orbitale
- III.3 Constellations de satellites
- III.4 Bilans de liaison

IV. Conclusion

- I.1 Présentation de TéSA
- I.2 Objectif du stage

I.1 Présentation de TéSA

<u>TéSA</u>: Télécommunications Spatiales et Aéronautiques, laboratoire privé

Date de création: 1998

Adresse:

14-16 Port Saint-Etienne à Toulouse

Partenaires:

-Académiques (Supaéro, ENSEEIHT, ENAC,...)

-Industriels (Thales Alenia Space,...)

-Institutionnels (CNES,...)

I.2 Objectif du stage et travail réalisé

❖ Objectif du stage : étude de quelques éléments bien ciblés de conception système des nanosatellites.

❖ Travail de stage :

- 1. Partie bibliographique : historique et état de l'art des nanosatellites
- 2. Partie théorique : éléments de conception d'un système nanosatellitaire
- 3. Partie réalisation et simulation : mise en place de scénarii de simulation sous STK pour des analyses orbitographiques, l'optimisation de constellations, et l'analyse des performances de communication.

II. Contexte (étude bibliographique)

- II.1 Définition et naissance des nanosatellites
- II.2 Caractéristiques des nanosatellites
- II.3 Pourquoi les nanosatellites?

II.1 Définition et naissance des nanosatellites

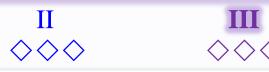
- **!** Les nanosatellites?
- → Petits satellites dont la masse est comprise entre 1 et 10 kg.
- Naissance des nanosatellites
- → Le 12 décembre 1961, le premier nanosatellite nommé «OSCAR» (Orbiting Satellite Carrying Amateur Radio) de masse 4,5 kg a été lancé et placé sur une très basse orbite terrestre (VLEO : Very Low Earth Orbit), et n'est resté en orbite que pendant 22 jours.

II.2 Caractéristiques des nanosatellites

Masse	1-10 kg
Types d'arbite	VLEO (Very Low Earth Orbit, altitude
Types d'orbite	inférieure à 500 km) ou LEO (500 à 800 km)
Bandes de fréquence	VHF (130-160 MHz) ou UHF (400-450 MHz)
Types de modulation	BPSK, FSK, AFSK ou GMSK
Puissance émise	750 mW ou 28,75 dBm en moyenne
Sensibilité du récepteur	Environ -100 dBm pour un TEB de 10 ⁻⁵
Débit descendant	1200, 2400, 4800 ou 9600 bit/s
Débit montant	De 300 à 1200 bit/s
Types de protocole de	Nombreux protocoles disponibles (AX. 25 pour
communication	la plupart des usages)
Coût	Inférieur à 1 million de dollars
Durée de vie	2-5 ans

II.3 Pourquoi les nanosatellites?

Plus rapides


• Temps de conception et de construction plus rapide.

Plus petits

- 1 10 kg.
- Possibilité d'être lancés en groupe ou en « Piggyback » avec de plus grands satellites

Meilleurs et moins chers

- Réduction des coûts de fabrication et de lancement
- Coûts inférieurs à 1 million de dollars
- Pertes financières minimisées en cas d'échec

III. Etudes théoriques et simulations

- III.1 Procédure
- III.2 Mécanique orbitale
- III.3 Constellations de satellites
- III.4 Bilans de liaison

III.1 Procédure

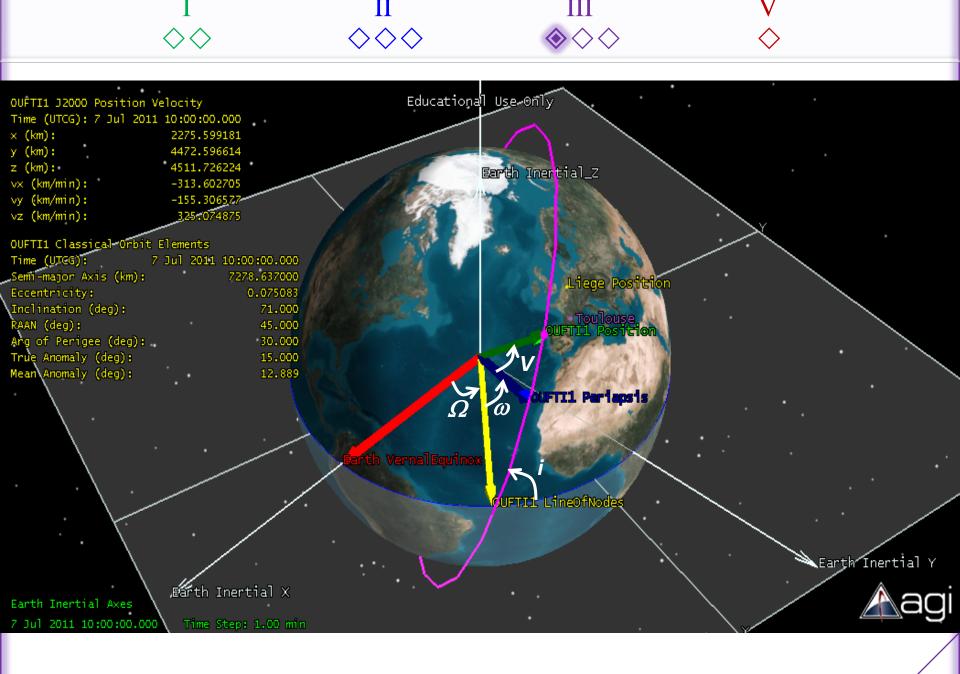
- ❖ 3 angles d'étude : mécanique orbitale, optimisation de constellations et bilans de liaison.
- * Outils logiciels:
 - Matlab et C
 - STK
 - Excel

III.2 Mécanique orbitale

- A. Objectif de la mécanique orbitale
- B. Rappel des éléments orbitaux classiques

 $\Diamond\Diamond\Diamond$

C. Paramètres orbitaux



L'objectif de la mécanique orbitale est de prévoir les trajectoires des objets spatiaux tels que les satellites.

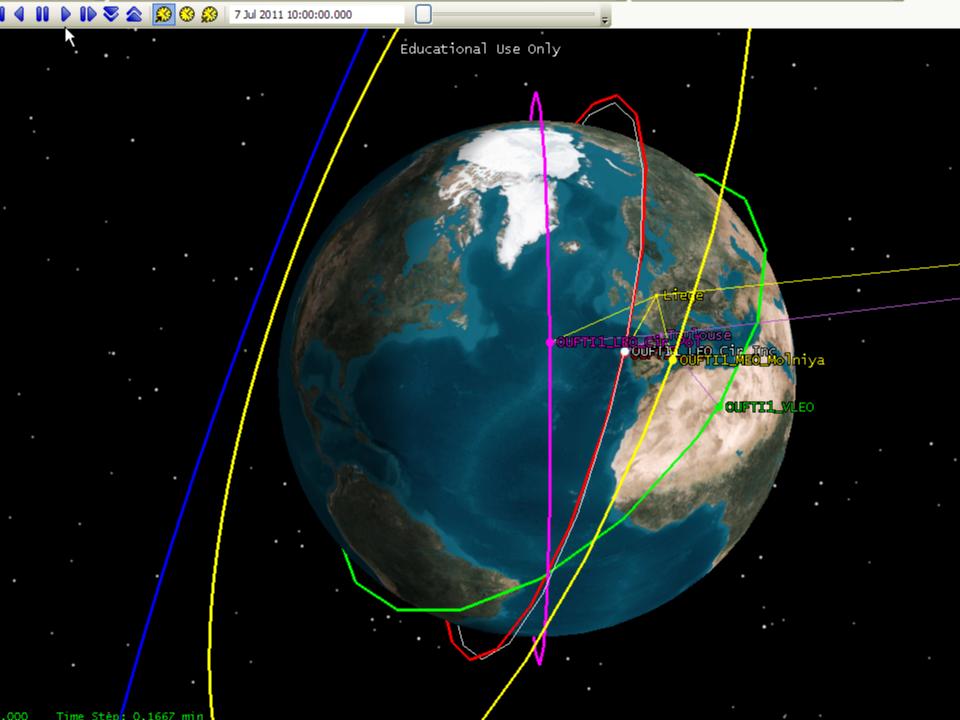
B. Rappel des éléments orbitaux classiques

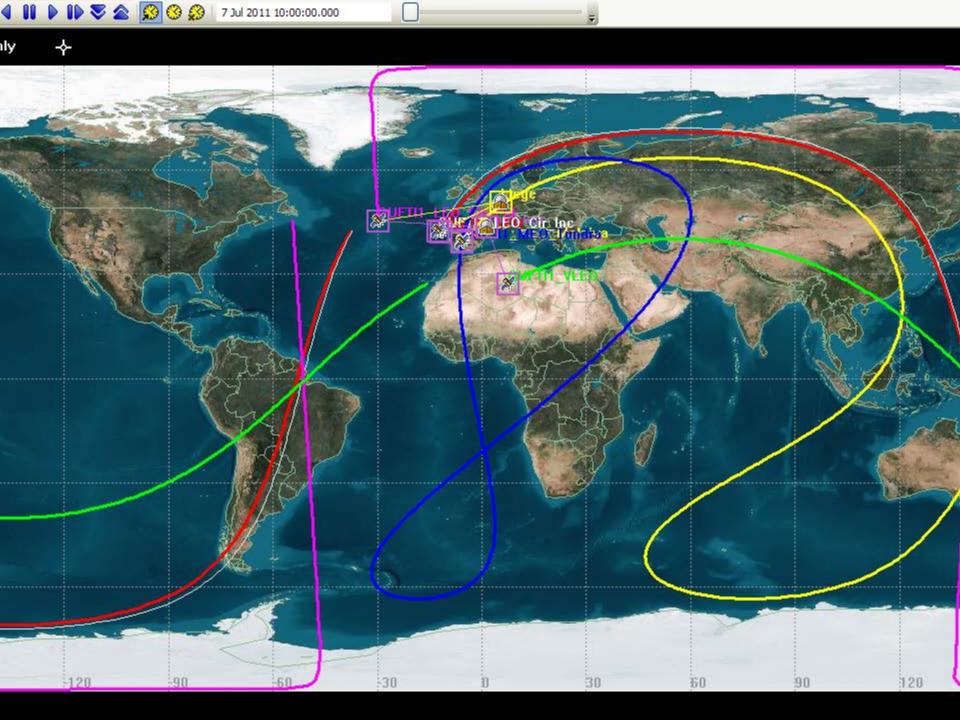
Il y a six éléments orbitaux classiques $(a, e, V, i, \omega \text{ et } \Omega)$ utilisés pour fournir la position et la trajectoire d'un satellite dans l'espace:

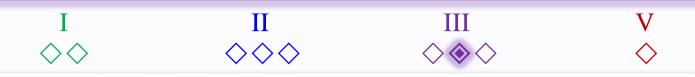
- *a* : demi-grand axe de l'ellipse;
- e : excentricité;
- *V*: anomalie vraie;
- *i*: inclinaison;
- ω : argument du périgée;
- Ω : longitude (ou ascension droite) du nœud ascendant. (En anglais, RAAN: Right Ascension of the Ascending Node)

C. Paramètres orbitaux

Types d'orbite		Circulaire				
Paramètres orbitaux	Unité	LEO	VLEO	MEO	MEO	LEO
	Office			"Molniya"	"Tundra"	LEO
Rayon terrestre (Re)	[km]	6378,14	6378,14	6378,14	6378,14	6378,14
Hauteur d'apogée (h _a)	[km]	1447,00	370,00	39105,00	46340,00	650,00
Hauteur de périgée (h_p)	[km]	354,00	368,00	1250,00	25231,00	650,00
Inclinaison (i)	[°]	71,00	40,02	63,4	63,4	72
$R.A.A.N(\Omega)$	[°]	45,00	45,00	45,00	45,00	45,00
Argument du périgée (\omega)	[°]	30,00	30,00	30,00	30,00	0,00
Anomalie vraie (v)	[°]	15,00	15,00	15,00	15,00	45,00
Demi-grand axe (a)	[km]	7278,64	6747,14	26555,64	42163,64	7028,14
Excentricité (e)		0,08	0,00015	0,71	0,25	0,00
Période orbitale (<i>T</i>)	[mn]	103,00	91,93	717,79	1436,04	97,73
Anomalie moyenne (<i>M</i>)	[°]	12,89	15,00	1,78	8,75	45,00
Variation de ω ($d\omega$)	[°/j]	-1,49	7,91	0,00	0,00	-1,85
Variation de $RAAN$ $(d\Omega)$	[°/j]	-2,07	-6,27	-0,13	-0,01	-2,19

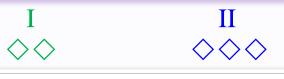

Conditions initiales du propagateur (Propagator Initial Conditions)


Nom de propagateur = J2Perturbation


Temps de début = 7 Jul 2011 10:00:00,000000000 UTCG

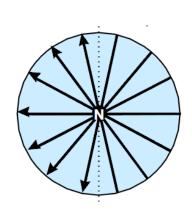
Temps d'arrête = 8 Jul 2011 10:00:00,000000000 UTCG

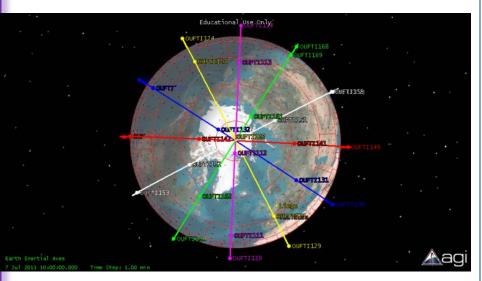
		Elliptique				Circulaire		
		LEO	VLEO	MEO "Molniya"	MEO "Tundra"	LEO "Incliné"	LEO "Polaire"	
Rayon du périgée	[km]	6732,14	6746,14	7628,14	31609,14	7028,14	7028,14	
Excentricité		0,08	0,00015	0,71	0,25	0,00	0,00	
Inclinaison	[deg]	71,00	40,02	63,40	63,40	72,00	90,00	
RAAN	[deg]	45,00	45,00	45,00	45,00	45,00	45,00	
Arg. du périgée	[deg]	30,00	30,00	30,00	30,00	0,00	0,00	
Anomalie vraie	[deg]	15,00	15,00	15,00	15,00	45,00	45,00	
Période orbitale	[min]	103,00	91,93	717,79	1436,04	97,73	97,73	
Variation de R.A.A.N $(d\Omega)$	[deg/jour]	-2,066	-6,271	-0,125	-0,007	-2,191	0.000	
Variation de $\omega \; (d \omega)$	[deg/jour]	-1,491	7,911	0,000	0,000	0,000	0.000	

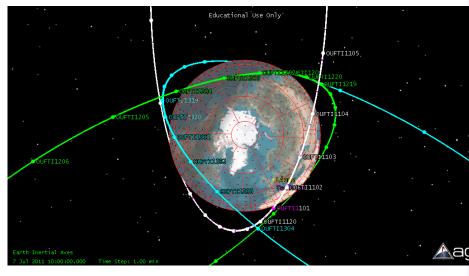

III.3 Constellations de satellites

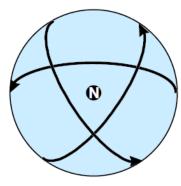
- A. Définition et objectif d'une constellation de satellites
- B. Walker Star et Walker Delta
- C. Constellations en couverture continue de la Terre

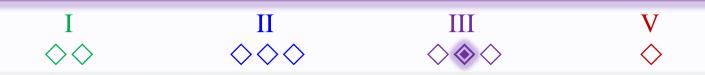
 $\Diamond\Diamond\Diamond$


- * <u>Définition</u>: groupe de satellites semblables qui sont synchronisés pour graviter autour de la terre.
- ❖ <u>Objectif</u>: fournir une couverture (continue) de la Terre ou d'une zone spécifique.
- ❖ Deux types de base de constellations : « Walker Star » et « Walker Delta ».

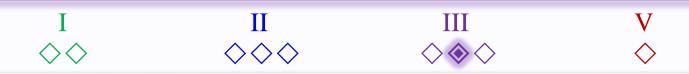






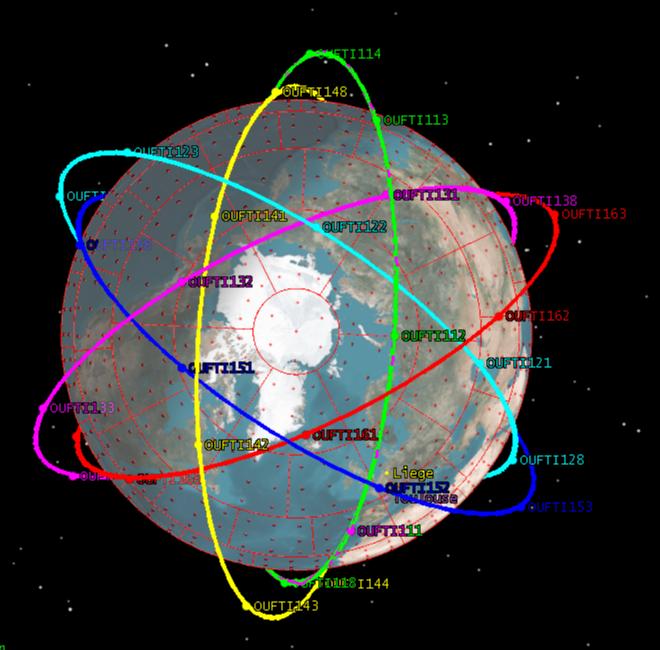


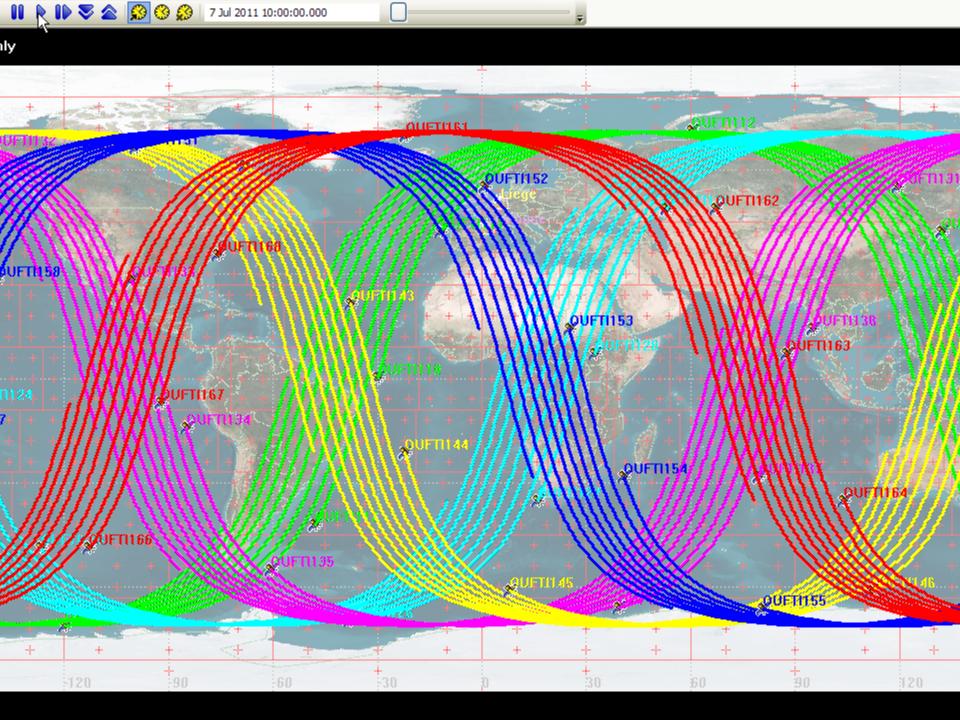
Walker Star


Walker Delta

C. Constellations en couverture continue de la Terre

- ❖ Comment trouver une constellation optimale en couverture continue de la Terre?
- → Tester une par une sous STK les combinaisons du nombre de plans P et du nombre N de satellites par plan.

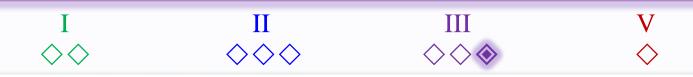

Type d'orbite	Valeur approximative				Valeur choisie de test			
	P_min	P_max	N_min	N_max	P_min	P_max	N_min	N_max
LEO elliptique	5	8	7	16	5	8	7	16
VLEO elliptique	9	10	13	14	9	10	13	14
MEO « Molniya » elliptique	2	4	4	64	2	4	4	64
MEO « Tundra » elliptique	2		12	21	2		4	21
LEO « inclinée » circulaire	7		10		6	8	7	12
LEO « polaire » circulaire	7		10		6	8	7	12




<u>Résultats</u>

Type d'orbite	Possibilité couverture continue de la Terre ?	Constellation optimale (inclinaison: nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Nombre total de satellites	
LEO elliptique Oui		71°: 6/8/1	48	
VLEO elliptique	Non	40.02°: xx/xx/xx	XX	
MEO « Molniya » elliptique	Oui	63.40°: 3/20/1	60	
MEO « Tundra » elliptique	Oui	63.40°: 2/5/1	10	
LEO « inclinée » circulaire	Oui	72°: 7/9/1	63	
LEO « polaire » circulaire	Oui	90°: 6/9/1	54	

Educational Use Only



III.4 Bilans de liaison

- A. Objectif
- B. Résultats de bilans de liaison

A. Objectif

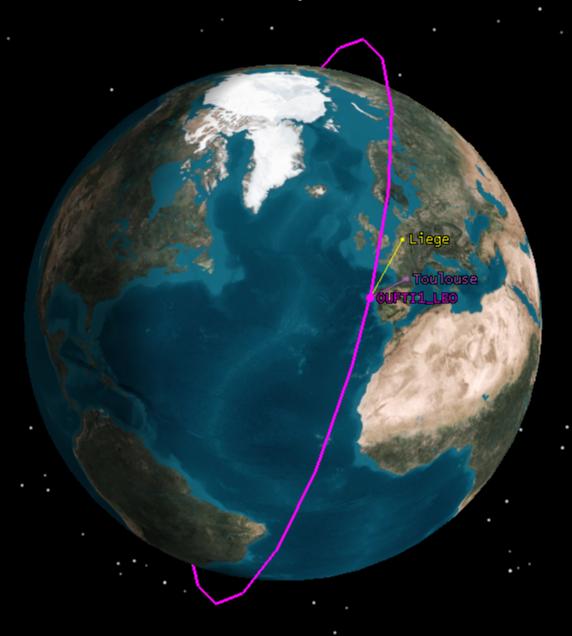
Les bilans de liaison ont été établis pour évaluer principalement la marge système et son évolution en fonction d'un certain nombre de paramètres, ce qui permet de vérifier si les liens de communication sont valides.

B. Résultats des bilans de liaison

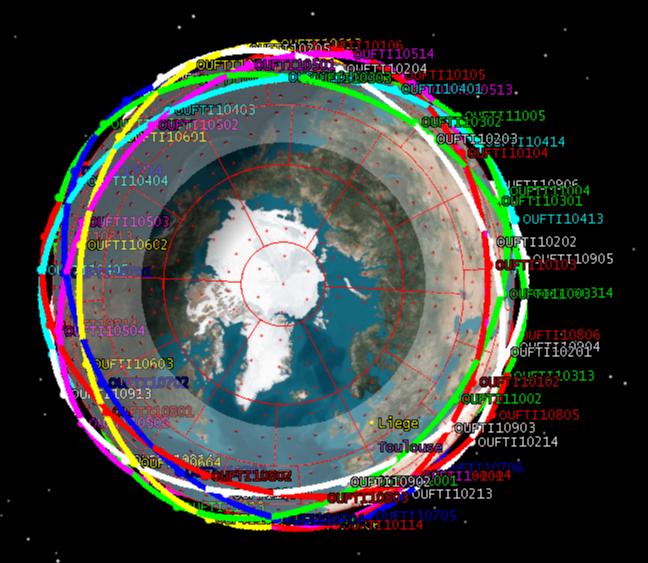
Type d'orbite	LEO (à l'altitude minimale du satellite)							
Bande de fréquence	UHF/VHF	UHF/VHF						
		Liaison montante (UHF) Liaison descendante (VH			VHF)			
Protocole	_	AX.25	D-STAR	AX.25	D-STAR	Balise		
Puissance transmise	[W]	20	20	0,75	0,75	0,10		
	[dBW]	13,01	13,01	-1,25	-1,25	-10,00		
Pertes en espace libre	[dB]	149,68	149,68	140,14	140,14	140,14		
Densité de puissance du rapport signal sur bruit (S/N ₀)	[dBHz]	69,60	69,60	60,62	60,62	51,87		
Débit des données	[bps]	9600,00	4800,00	9600,00	4800,00	20,00		
	[dBHz]	39,82	36,81	39,82	36,81	13,01		
E _b /N ₀ du système	[dB]	29,78	32,79	20,80	23,81	38,86		
E_b/N_0 seuil	[dB]	14,35	10,72	14,35	10,72	14,35		
Marge système	[dB]	15,43	22,07	6,45	13,09	24,51		
Marge système désiré	[dB]	6,00	6,00	6,00	6,00	6,00		
Marge système disponible	[dB]	9,43	16,07	0,45	7,09	18,51		
Puissance minimale admissible de l'émetteur	[dB]	3,58	-3,06	-1,70	-8,34	-28,51		
	[W]	2,28	0,49	0,68	0,15	0,0014		

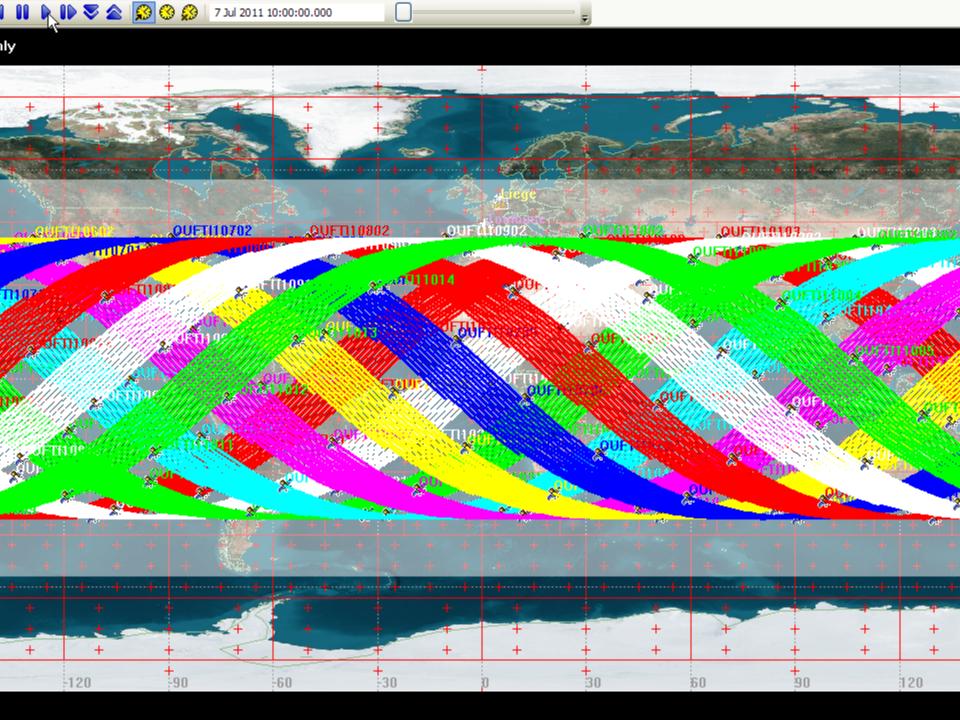
IV. Conclusion

- ❖ 3 points principaux :
 - 1. Mécanique orbitale
 - 2. Constellations de satellites
 - 3. Bilans de liaison.
- ❖ Plusieurs logiciel utilisés : Matlab, C, STK et Excel.
- Nombreux avantages du nanosatellite : « plus rapide, plus petit, meilleur et moins cher ».



MERCI DE VOTRE ATTENTION


sition Velocity 2011 10:00:00.000 2275.599181 4472.596614 . 4511.726224 - -313.602705 -155.306577 325.074875


Orbit Elements 7 Jul 2011 10:00:00.000 7278.637000 0.075083 71.000 45.000 30.000 15.000 12.889

Educational Use Only

Educational Use Only

