Les communications par satellite qui nous permettent de communiquer à travers le monde ont été développées depuis les années 1960. Aujourd'hui, il est difficile de passer une journée sans l'aide des communications par satellite. Grâce à leurs avantages qui pourraient se résumer par la formule suivante : « Plus rapides, plus petits, meilleurs et moins chers », les nanosatellites sont récemment devenus un sujet de recherche très intéressant dans de nombreux pays développés. Ce mémoire traitera beaucoup d'aspects liés aux nanosatellites, à travers trois parties principales : une partie bibliographique, une partie théorique, et une partie réalisation et simulation. Les points les plus saillants et significatifs dans ce mémoire sont l'étude de la mécanique orbitale des nanosatellites, la détermination de constellations optimales, et le calcul des bilans de liaison pour différents types d'orbite, dont LEO (Low Earth Orbit), VEO (Very Low Earth Orbit) et MEO (Medium Earth Orbit).

J'ai deux diplômes de master: master de recherche parcours RT (Réseaux et Télécoms) à l'INPT/ENSEEIHT en France, et master professionnelle CAMSI (l'architecture des systèmes embarqués) à l'université Toulouse III - Paul Sabatier en France. À present, je travail comme un enseignant à l'Institute de Technologie de Kirirom (KIT), au Cambodge.

Vicheka Phor

Nanosatellite: état de l'art, éléments de conception et simulations

Phor

INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE

Master Informatique et Télécommunications Parcours Réseaux & Télécoms 2010-2011

Année : 2011

Nom du Laboratoire : Télécommunications Spatiales et Aéronautiques (TéSA)

Directeur : M. Francis CASTANIÉ

Nanosatellite : état de l'art, éléments de conception et simulations

Auteur : M. Vicheka PHOR

Directeur de Recherche :

Nom du Projet :

Responsable du stage : M. Ponia PECH

Dirigé par : M. Christian FRABOUL

Résumé : Les communications par satellite qui nous permettent de communiquer à travers le monde ont été développées depuis les années 1960. Aujourd'hui, il est difficile de passer une journée sans l'aide des communications par satellite. Grâce à leurs avantages qui pourraient se résumer par la formule suivante : « Plus rapides, plus petits, meilleurs et moins chers », les nanosatellites sont récemment devenus un sujet de recherche très intéressant dans de nombreux pays développés. Ce mémoire traitera beaucoup d'aspects liés aux nanosatellites, à travers trois parties principales : une partie bibliographique, une partie théorique, et une partie réalisation et simulation. Les points les plus saillants et significatifs dans ce mémoire sont l'étude de la mécanique orbitale des nanosatellites, la détermination de constellations optimales, et le calcul des bilans de liaison pour différents types d'orbite, dont LEO (Low Earth Orbit), VEO (Very Low Earth Orbit) et MEO (Medium Earth Orbit).

REMERCIEMENTS

Étudier à l'étranger nécessite de la détermination, de la patience, de travailler avec acharnement, et surtout des encouragements de la famille, des amis et des professeurs. Ce mémoire a pu être complété grâce à eux.

Tout d'abord, je tiens à remercier l'AUF, l'Agence universitaire de la Francophonie, qui m'a offert une bourse pour poursuivre mon master à l'ENSEEIHT, à Toulouse.

Je tiens à remercier vivement M. Christian FRABOUL, directeur du Département d'Informatique et de Télécommunications, qui m'a accepté au sein de la formation de master.

Je voudrais aussi remercier Mme Violette ANTON-ROIG, secrétaire du Département d'Informatique et de Télécommunications, qui m'a beaucoup aidé pendant mes études.

Je voudrais dire un grand merci à M. Francis CASTANIÉ, directeur du laboratoire TéSA de recherche en télécommunications spatiales et aéronautiques, qui a accepté que je fasse un stage au sein du laboratoire.

Je tiens à exprimer mes profondes gratitudes à M. Ponia PECH, ingénieur de recherche au laboratoire TéSA, qui a été aussi mon maître de stage. J'apprécie vraiment son aide, ses conseils et lui suis reconnaissant pour le temps précieux qu'il m'a consacré.

Je voudrais également dire merci à toutes les personnes travaillant au laboratoire TéSA, merci pour leur gentillesse et leur bonté.

Enfin, je voudrais dire un grand merci à ma famille qui m'a prodigué de l'amour, à mes amis et à mes professeurs qui ont toujours su me supporter et m'encourager au cours de cette année.

Je vous souhaite à tous tout le bonheur, toujours.

RÉSUMÉ

Les communications par satellite qui nous permettent de communiquer à travers le monde ont été développées depuis les années 1960. Aujourd'hui, il est difficile de passer une journée sans l'aide des communications par satellite. Grâce à leurs avantages qui pourraient se résumer par la formule suivante : « Plus rapides, plus petits, meilleurs et moins chers », les nanosatellites sont récemment devenus un sujet de recherche très intéressant dans de nombreux pays développés. Ce mémoire traitera beaucoup d'aspects liés aux nanosatellites, à travers trois parties principales : une partie bibliographique, une partie théorique, et une partie réalisation et simulation. Les points les plus saillants et significatifs dans ce mémoire sont l'étude de la mécanique orbitale des nanosatellites, la détermination de constellations optimales, et le calcul des bilans de liaison pour différents types d'orbite, dont LEO (Low Earth Orbit), VEO (Very Low Earth Orbit) et MEO (Medium Earth Orbit).

GLOSSAIRE

	A
ACS	Attitude Determination System
ADC	Attitude Determination and Control subsystem
AED	Air Earon Dago
AFD	
AFSK	Audio Frequency Shift Keying
AGI	Analytical Graphics, Inc.
AMBE	Advanced Multi-Band Excitation
API	Application Programming Interface
Ara	Argument
AV 25	Amotour V 25
AA.23	Amateur A.25
	В
BER	Bit Error Rate
BPSK	Binary Phase Shift Keying
	Ċ
C&DH	Command and Data Handling subsystem
CCITT	Conter for the Commercialization of Innovative Transportation
CCITI	
	l echnology
CNES	Centre National d'Etudes Spatiales
COM	Communication Subsystem
	D
DD	Digital Data
deg	degrés
	Disital Queent Tashu ala an fan Amatann Dadia
D-STAK	Digital Smart Technology for Amateur Radio
DV	Digital Voice
	E
ENAC	École Nationale de l'Aviation Civile
ENSICA	École Nationale Supérieure des Ingénieurs de la Construction
LIGICII	Aéronautique
ENGT	É el Netionale Con (nimera de T/1/ en m
ENSI	Ecole Nationale Superleure de Telecom
EPS	Electrical Power Systems
	F
FCS	Frame Check Sequence
FEC	Forward Error Correction
FSK	Frequency Shift Keving
	G
C/T	Eigure de mérite (d'une entenne)
G/1	Figure de merite (d'une antenne)
GEO	GEostationary Orbit
GMSK	Gaussian Minimum Shift Keying
GNC	Guidance and Navigation Control subsystem
GS	Ground Station
GS	Ground Station
LIEO	II IIich Earth Orbit
HF	High Frequency
INPT	Institut National Polytechnique de Toulouse
ISAE	Institut Supérieur de l'Aéronautique et de l'Espace
ISL	Inter-Satellite Link
	I I I I I I I I I I I I I I I I I I I
IARI	Jananese Amateur-Radio League
LCLG	LoCal Gregorian
LEO	Low Earth Orbit

Li-Po	Lithium-Polymer
LNA	Low Noise Amplifier
LOS	Line Of Sight
	М
MCC	Mission Control Center
MECH	MECHanism Subsystem
MEO	Medium Earth Orbit
min	minutes
	0
OBC	On-Board Computer
OUFTI-1	Orbital Utility For Telecommunication Innovation-1
	Р
PID	Protocol ID
PIRE	Puissance Isotrope Rayonnée Equivalente
PMAS	Passive Magnetic Attitude Stabilization
P-POD	Poly-PicoSatellite Orbital Deployer
PII	Pattern Unit
OPSK	Quadrinbase Phase Shift Keying
QI DIK	R
RAAN	Right Ascension of the Ascending Node (Ascension droite du nœud
	ascendant)
Rx	Receiver (Récepteur)
	S
sec	seconds
SL	SatelLite
SNR	Signal to Noise Ratio
STK	Satellite Tool Kit
STNA	Satemice Tool Kit Service Technique de la Navigation Aérienne
SINA	
TC	Telecommand
TCS	Thermal Control Subsystem
	Thermal Control Subsystem
	Therman Control Subsystem
	Taux a Effeur Binaire
INC	Terminal Node Controller
TNOS	Total Number of Satellites
TOF	Time Of Flight (Temps de vol)
TT&C	Tracking, Telemetry and Command subsystem
TTC	Tracking, Telemetry and Command
Tx	Tranceiver (émetteur)
LIID	
UHF	Ultra High Frequency
UTCG	Universal Coordinated Time Gregorian
UV	Ultra Violet
1.0.15	V
VHF	Very High Frequency
VLEO	Very Low Earth Orbit
VSAT	Very Small Aperture Terminal
	W
WPM	Words Per Minute (mots par minute)
	X
xEPS	Experimental EPS

LISTE DES ILLUSTRATIONS

Figure I.1 : Partenaires de TéSA	1
Figure II.1 : Classification des satellites miniaturisés	4
Figure II.2 : Architecture d'un système de communication par satellite	5
Figure II.3 : Types d'orbite des satellites	6
Figure III.1 : Architecture du segment spatial	12
Figure III.2 : Architecture du segment terrestre	12
Figure III.3 : Eléments orbitaux classiques	16
Figure III.4 : Onglet « Orbit & Fréquence » de l'outil Excel de calcul des bilans de liaison	23
Figure III.5 : Onglet « Downlink Budget » de l'outil Excel de calcul des bilans de liaison	23
Figure III.6 : Structure des bilans de liaison	24
Figure III.7 : Courbe d'Eb/N0 théorique en fonction du TEB pour différents types de modulation	
Figure IV.1 : Tableau des produits STK	32
Figure IV.2 : Licences actives dans la version enseignement de STK	32
Figure IV.3 : Scénario de simulation pour l'orbite LEO elliptique	34
Figure IV.4 : Organigramme pour trouver la constellation optimale de satellites pour la couverture continue de la Terre	40
Figure IV.5 : Graphiques 2D et 3D de la constellation « Walker Delta » de l'orbite LEO elliptique définie par 71° : 6/8/1	41
Figure IV.6 : Graphiques 2D et 3D de la constellation « Walker Delta » de l'orbite LEO elliptique définie par 71° : 5/9/1	42
Figure IV.7 : Organigramme de l'algorithme permettant de trouver la constellation optimale de satellites pour une couverture continue d'une zone spécifiée	45

LISTE DES TABLEAUX

Tableau II.1 : Comparaison des orbites pour les communications par satellite	6
Tableau II.2 : Bandes de fréquences des communications par satellite	7
Tableau II.3 : Caractéristiques des nanosatellites	8
Tableau II.4 : Avantages et inconvénients des nanosatellites	9
Tableau III.1 : Caractéristiques du nanosatellite KAMPUCH-1	11
Tableau III.2 : Performances en Eb/N0 suivant le schéma de modulation et codage	14
Tableau III.3 : Éléments orbitaux classiques	15
Tableau III.4 : Différents types d'orbites	15
Tableau III.5 : Zone de couverture, durée de visibilité et nombre de satellites pour assurer une couverture continue de la Terre pour différents types d'orbite	18
Tableau III.6 : Zone de couverture, durée de visibilité et nombre des satellites pour assurer une couverture continue de la Terre pour différents angles d'élévation	18
Tableau III.7 : Temps de vol du périgée à l'anomalie vraie initiale pour différents types d'orbite	18
Tableau III.8 : Détermination des constellations optimales par la méthode « Walker Star »	20
Tableau III.9 : Détermination de la constellation « Walker Delta » pour différents types d'orbite	21
Tableau III.10 : Bilans de liaison entre le nanosatellite KAMPUCH-1 et la station terrestre de Liège	26
Tableau III.11 : Pertes en espace libre pour différents types d'orbite	26
Tableau III.12 : Pertes en espace libre pour différentes bandes de fréquence	27
Tableau III.13 : Impact des fréquences sur les bilans de liaison avec le protocole AX.25	29
Tableau III.14 : Performances de différents schémas de modulation et codage pour le protocole AX.25	30
Tableau IV.1 : Caractéristiques des différents types d'orbite utilisés dans les scénarii de simulation STK	33
Tableau IV.2 : Périodes orbitales des différents types d'orbite	

Tableau IV.3 : Éléments orbitaux classiques de l'orbite LEO elliptique	
Tableau IV.4 : Éléments orbitaux classiques de l'orbite VLEO elliptique	35
Tableau IV.5 : Éléments orbitaux classiques de l'orbite MEO « Molniya » elliptique	35
Tableau IV.6 : Éléments orbitaux classiques de l'orbite MEO « Tundra » elliptique	
Tableau IV.7 : Éléments orbitaux classiques de l'orbite LEO « inclinée » circulaire	
Tableau IV.8 : Éléments orbitaux classiques de l'orbite LEO « polaire » circulaire.	
Tableau IV.9 : Valeurs choisies de P_min, P_max, N_min et N_max pour trouver les constellations optimales en couverture continue de la Terre pour différents types d'orbite	
Tableau IV.10 : Résumé des résultats de mécanique orbitale sans la contrainte de l'angle d'élévation minimal	
Tableau IV.11 : Résumé des résultats de mécanique orbitale avec une contrainte de l'angle d'élévation minimal à 6 degrés	; 39
Tableau IV.12 : Constellations « Walker Delta » en couverture continue de la Terro pour une orbite LEO elliptique	e 41
Tableau IV.13 : Constellation « Walker Delta » en couverture continue de la Terre pour une orbite VLEO elliptique	42
Tableau IV.14 : Constellation « Walker Delta » en couverture continue de la Terre pour une orbite MEO « Molniya » elliptique	43
Tableau IV.15 : Constellation « Walker Delta » en couverture continue de la Terre pour une orbite MEO « Tundra » elliptique	43
Tableau IV.16 : Constellation « Walker Delta » en couverture continue de la Terre pour des orbites LEO « inclinées » circulaires	44
Tableau IV.17 : Constellation « Walker Star » en couverture continue de la Terre pour des orbites LEO « polaires » circulaires	44
Tableau IV.18 : Constellations optimale en couverture continue de la Terre	44
Tableau IV.19 : Valeurs choisies de P_min, P_max, N_min et N_max pour trouver la constellation optimale en couverture continue d'une zone spécifique pour des orbites LEO elliptiques et LEO « inclinées » circulaires	
Tableau IV.20 : Constellation optimale par la méthode « Walker Delta » pour des orbites LEO elliptiques en couverture continue d'une zone spécifique	
Tableau IV.21 : Constellation « Walker Delta » en couverture continue d'une zone spécifique (Toulouse-Liège) pour des orbites LEO « inclinées » circulaires	

Tableau IV.22 : Constellations « Walker Delta » optimales en couverture continue d'une zone spécifique entre Toulouse et Liège	47
Tableau IV.23 : Principales caractéristiques du système de communication étudié	
Tableau IV.24 : Bilans de liaison pour l'orbite LEO elliptique pour le canal AX.25.	
Tableau IV.25 : Bilans de liaison pour l'orbite LEO elliptique pour le canal D- STAR	49
Tableau IV.26 : Bilans de liaison pour l'orbite LEO elliptique pour le canal de balise	50
Tableau IV.27 : Bilans de liaison pour une orbite LEO « inclinée » circulaire sur le canal AX.25	51
Tableau IV.28 : Bilans de liaison pour une orbite LEO « inclinée » circulaire sur le canal D-STAR	51
Tableau IV.29 : Bilans de liaison pour une orbite LEO « inclinée » circulaire sur le canal de balise	51

TABLE DES MATIERES

REMERCIEMENTS RÉSUMÉ GLOSSAIRE LISTE DES ILLUSTRATIONS LISTE DES TABLEAUX

CHAPITRE I

Introduction

I.1	Introduction au sujet de recherche	. 1
I.2	Présentation de TéSA	. 1
I.3	Objectif du stage	.2
I.4	Thématique générale du Master IT-RT	2

CHAPITRE II

Partie bibliographique : état de l'art du développement des nanosatellites – technologies et applications

II.1 Introduction aux nanosatellites	4
II.1.1 Historique des nanosatellites	4
A. Satellites miniaturisés	4
B. Naissance des nanosatellites	4
II.1.2 Caractéristiques générales d'un système nanosatellitaire	5
A. Architecture d'un système de communication par satellite	5
B. Types d'orbite	6
C. Bandes de fréquences	7
II.2 Technologies nanosatellitaires	7
II.2.1 Caractéristiques des nanosatellites	7
II.2.2 Sous-systèmes des nanosatellites	8
II.2.3 Avantages et inconvénients des nanosatellites	9
II.2.4 Défis des nanosatellites	9
II.3 Applications des nanosatellites	9
II.4 Conclusion	10

CHAPITRE III

Partie théorique : éléments de conception d'un système nanosatellitaire

III.1 Définition de la mission	
III.2 Architecture système	
III.2.1 Architecture du segment spatial	
III.2.2 Architecture du segment terrestre	
A. Station terrestre	
B. Centre de contrôle de mission	
C. Relais D-STAR	
D. Module D-STAR de communication par satellite	
III.3 Couche physique et couche liaison.	
III.3.1 Protocole AX.25	14
 B. Centre de contrôle de mission C. Relais D-STAR D. Module D-STAR de communication par satellite III.3 Couche physique et couche liaison III.3.1 Protocole AX.25 	1

III.3.2 Protocole D-STAR	14
III.3.3 Balise	14
III.4 Détermination de l'orbite	14
III.4.1 Éléments orbitaux classiques	14
III.4.2 Caractérisation des orbites	15
III.4.3 Zone de couverture, durée de visibilité et nombre de satellites nécessaires pour	
une couverture continue	16
III.4.4 Temps de vol du périgée à l'anomalie vraie initiale	18
III.5 Constellation de satellites	18
III.5.1 Constellations d'orbites circulaires	19
A. Walker Star	19
B. Walker Delta	20
III.5.2 Constellations d'orbites elliptiques	21
III.6 Bilans de liaison	22
III.6.1 Outil Excel feuille de calcul de bilans de liaison	22
III.6.2 Structure des bilans de liaison	23
III.6.3 Bilans de liaison du nanosatellite KAMPUCH-1	24
A. Bilans de liaison entre le nanosatellite KAMPUCH-1 et la station terrestre	
de Liège	24
B. Impact des types d'orbite sur les bilans de liaison	26
C. Impact des fréquences sur les bilans de liaison	27
D. Impact des types de modulation avec ou sans codage sur le bilan de liaison	29

CHAPITRE IV

Partie réalisation et simulation : réalisation d'un simulateur d'analyse orbitographique et d'analyse des performances de communication

IV.1 Présentation de STK	31
IV.2 Mécaniques orbitales pour différents types d'orbite	33
IV.2.1 Remarques préliminaires	33
IV.2.2 Objectif des simulations de mécanique orbitale	33
IV.2.3 Résultats de simulation	33
A. Éléments orbitaux classiques	34
B. Accès et l'AER	36
IV.2.4 Synthèse des résultats des simulations de mécanique orbitale	36
IV.3 Constellations en couverture continue de la Terre pour différents types d'orbite	37
IV.3.1 Objectif des scenarii de simulation	37
IV.3.2 Méthode de recherche de la constellation optimale	37
IV.3.3 Constellations optimales en couverture continue de la Terre	41
A. Orbite LEO elliptique	41
B. Orbite VLEO elliptique	42
C. Orbite MEO « Molniya » elliptique	43
D. Orbite MEO « Tundra » elliptique	43
E. Orbite LEO « inclinée » circulaire	44
F. Orbite LEO « polaire » circulaire	44
IV.3.4 Résumé de l'optimisation des constellations	44
IV.4 Constellation de satellites optimale pour des orbites de basse altitude pour couvrir	
une région spécifique	45
IV.4.1 Description des scénarii de simulation	45
IV.4.2 Méthode pour trouver la constellation optimale	45
IV.4.3 Constellations optimales en couverture continue sur une zone spécifique	46
A. Orbite LEO elliptique	46
B. Orbite LEO « inclinée » circulaire	46

IV.4.4 Synthèse des résultats d'optimisation des constellations	47
IV.5 Bilans de liaison entre un nanosatellite en basse orbite terrestre et une station	
terrestre située à Liège	47
IV.5.1 Description des scénarii de simulation	47
IV.5.2 Bilans de liaison du système satellitaire en orbite terrestre basse	
A. Orbite LEO elliptique	49
B. Orbite LEO « inclinée » circulaire	
IV.6 Conclusion	

NCLUSION

REFERENCES BIBLIOGRAPHIQUES ANNEXES

CHAPITRE I

Introduction

Ce chapitre présentera trois points importants : introduction au sujet de recherche, présentation de TéSA, objectif du stage et thématique générale du Master IT-RT.

I.1 Introduction au sujet de recherche

Les communications par satellite sont le résultat de la recherche dans le champ des communications et des technologies spatiales dont l'objectif est d'augmenter la distance et les capacités des communications avec les plus bas coûts possibles.

La Deuxième Guerre mondiale a stimulé l'expansion de deux technologies bien distinctes : les missiles et les micro-ondes. L'expertise définitivement acquise dans l'utilisation combinée de ces deux techniques a ouvert l'ère des communications par satellite.

Avant les années 2000, il y avait beaucoup de satellites traditionnels lancés et placés sur une orbite terrestre, ainsi que des minisatellites (< 500 kg) et des microsatellites (< 100 kg).

Depuis les années 2000, grâce aux progrès des microtechnologies, l'industrie aérospatiale et la communauté de la recherche ont engagé des missions qui impliquent de nombreux satellites, petits et peu coûteux tels que les nanosatellites (< 10 kg) et les picosatellites (< 1 kg) car les missions des satellites traditionnels sont extrêmement coûteuses (les coûts se chiffrent en milliards de dollars) et le développement de ces derniers nécessite beaucoup de temps.

De fait, les nanosatellites ont été l'objet d'un immense intérêt renouvelé à travers le monde ces tous dernières années grâce à leurs avantages énumérés ci-dessous :

- durée de développement plus rapide ;
- possibilité de rendre redondants les satellites, ce qui augmente la fiabilité du système ;
- réduction de la taille et du coût des stations terrestres ;
- solution idéale pour tester de nouvelles technologies ;
- possibilité d'être lancés en groupe ou en « Piggyback » avec de plus grands satellites ;
- réduction des coûts de fabrication et de lancement ;
- pertes financières minimisées en cas d'échec.

Les nanosatellites sont donc une solution bien ciblée aux problèmes de budget, de temps de développement, et de fiabilité d'un système de communications par satellite.

I.2 Présentation de TéSA

TéSA (Télécommunications Spatiales et Aéronautiques) est un laboratoire privé et coopératif créé en 1998, et situé au 14-16, port Saint-Etienne à Toulouse. TéSA rassemble les partenaires académiques ENAC, ENSEEIHT, ENSICA et Supaero (tous deux maintenant regroupés au sein de l'ISAE), ENST, INPT ; les industriels Thales Alenia Space et Rockwell Collins France ; et les institutionnels CNES et STNA (Service Technique de la Navigation Aérienne).

I.3 Objectif du stage

Les potentialités technologiques et économiques des nanosatellites qui offrent des perspectives d'avenir novatrices dans la conception des systèmes spatiaux et qui sont susceptibles de devenir une filière technologique et industrielle concurrente de la filière traditionnelle justifient quelque anticipation stratégique dans la recherche. L'objectif de ce stage est de contribuer à l'étude des nanosatellites dans cette perspective.

Le travail de stage, d'une durée de 6 mois et réalisé entre début mars et septembre 2011, se découpe en trois parties :

- 1. **Partie bibliographique :** état de l'art du développement des nanosatellites, de leurs technologies et de leurs applications. Cette partie présentera les éléments ci-dessous :
 - introduction aux nanosatellites : historique des nanosatellites et caractéristiques générales d'un système nanosatellitaire ;
 - technologies nanosatellitaires : caractéristiques des nanosatellites, sous-systèmes des nanosatellites, avantages, inconvénients et défis des nanosatellites ;
 - applications des nanosatellites.
- 2. Partie théorique : éléments de conception d'un système nanosatellitaire. Cette partie consiste à étudier quelques éléments bien ciblés de conception préliminaire d'un système nanosatellitaire, en vue d'un futur démonstrateur éventuel, en partant au préalable d'une claire définition de la mission qui a été faite en étroite conjonction avec le laboratoire TéSA. Les éléments suivants de conception seront pris en compte :
 - définition de la mission ;
 - architecture système ;
 - couche physique et couche liaison ;
 - détermination de l'orbite ;
 - constellation de satellites ;
 - bilans de liaison.
- **3. Partie réalisation et simulation :** réalisation d'un simulateur d'analyse orbitographique. Les études bibliographique et théorique menées dans les parties précédentes seront complétées dans cette troisième partie par la mise en œuvre, sous l'environnement logiciel STK, de scénarii représentatifs du système nanosatellitaire étudié (segment spatial, segment terrestre et architecture réseau) qui permettront de simuler, analyser et valider la conception du système. Cette partie abordera les thèmes ci-dessous :
 - présentation de STK ;
 - mécanique orbitale pour différents types d'orbite ;
 - constellations en couverture continue de la Terre pour différents types d'orbite ;
 - constellations pour un système satellitaire optimisé et rentable en basse orbite terrestre entre deux endroits précis ;
 - bilans de liaison entre un nanosatellite en basse orbite terrestre et une station terrestre.

I.4 <u>Thématique générale du Master IT-RT</u>

Le vaste sujet des nanosatellites traité dans ce stage, s'il est nouveau, fait intervenir de nombreux champs multidisciplinaires de recherche et diverses disciplines des sciences de l'ingénieur :

- systèmes électriques et énergétiques (exemples : pico-cellules solaires, batteries, capteurs, etc.);
- mécanique (exemple : structure du nanosatellite, antennes, etc.) ;
- automatique (exemple : contrôle d'attitude du nanosatellite, contrôle de la vitesse du nanosatellite, contrôle thermique, etc.);
- réseaux et télécommunication (exemples : protocoles de communication, performances des communications, bilans de liaison, etc.).

Plus précisément, au cours de ce stage, les différents éléments de conception d'un système nanosatellitaire ont été abordés, depuis la définition de mission, jusqu'à l'analyse des performances de communication, en passant par l'étude du segment terrestre et du segment spatial. Un bref survol des divers sous-systèmes embarqués est

donné, ce qui offre l'opportunité de se placer dans la situation de la conception préliminaire d'un système nanosatellitaire complet.

Les points suivants :

- détermination de l'attitude du satellite, avec la comparaison des différents types d'orbite (VLEO, LEO et MEO),
- détermination de la constellation optimale, et analyse des performances des communications sous l'angle des bilans de liaison

sont davantage orientés vers les aspects communications et orbitographiques et donneront lieu au développement d'un simulateur d'analyse orbitographique et de constellations sous STK et à des simulations sous MATLAB.

Il s'avère donc que l'étude d'un système nanosatellitaire réalisée au cours de ce stage rentre parfaitement dans le cadre de la thématique du Master Recherche Informatique et Télécoms, parcours Réseaux et Télécoms (Master IT-RT).

CHAPITRE II

Partie bibliographique : état de l'art du développement des nanosatellites – technologies et applications

Ce chapitre décrit trois points principaux :

- 1. Introduction aux nanosatellites : historique des nanosatellites et caractéristiques générales d'un système nanosatellitaire;
- 2. Technologies nanosatellitaires : caractéristiques des nanosatellites, sous-systèmes des nanosatellites, avantages, inconvénients et défis des nanosatellite;
- 3. Applications des nanosatellites.

II.1 Introduction aux nanosatellites

II.1.1 <u>Historique des nanosatellites</u>

A. <u>Satellites miniaturisés</u>

Les satellites miniaturisés ou petits satellites sont des satellites artificiels avec des poids exceptionnellement faibles, généralement moins de 500 kg, et des petites dimensions. La technologie des satellites miniaturisés a ouvert une nouvelle ère de l'ingénierie satellitaire en diminuant le coût des missions spatiales et sans réduire les performances.

Les satellites miniaturisés peuvent être classés en quatre groupes basés sur leur masse :

- minisatellites (entre 100 et 500 kg);
- microsatellites (entre 10 et 100 kg);
- nanosatellites (entre 1 et 10 kg);
- picosatellites (entre 0,1 et 1 kg).

Les satellites miniaturisés traditionnels sont des minisatellites ou des microsatellites. Le CubeSat, avec une masse maximale de 1 kg, est un exemple de grand picosatellite ou de petit nanosatellite.

B. <u>Naissance des nanosatellites</u>

Les communications par satellite sont le résultat de la recherche dans le champ des communications et des technologies spatiales dont l'objectif est d'augmenter la distance et les capacités des communications avec les plus bas coûts possibles.

La Deuxième Guerre mondiale a stimulé l'expansion de deux technologies bien distinctes : les missiles et les micro-ondes. L'expertise définitivement acquise dans l'utilisation combinée de ces deux techniques a ouvert l'ère des communications par satellite.

Le premier satellite traditionnel avec émetteur radio destiné aux études atmosphériques, Spoutnik, de masse 83,6 kg, a été lancé et placé sur une basse orbite elliptique terrestre (LEO: Low Earth Orbit, apogée : 947 km, périgée: 215 km, inclinaison : 65°) par l'Union soviétique, le 4 octobre 1957. Le Spoutnik n'est resté en orbite que pendant trois mois avant d'être consumé alors qu'il pénétrait dans l'atmosphère terrestre.

Les missions des satellites traditionnels sont extrêmement coûteuses (les coûts se chiffrent en milliards de dollars), depuis la phase de conception jusqu'à l'exploitation, en passant par la construction et le lancement. Par conséquent, l'industrie aérospatiale et la communauté de la recherche ont commencé à diriger leur attention sur

des missions qui impliquent de nombreux satellites, petits et peu coûteux tels que les nanosatellites et les picosatellites.

Le 12 décembre 1961, le premier nanosatellite nommé « Orbiting Satellite Carrying Amateur Radio » (OSCAR) de masse 4,5 kg a été lancé et placé sur une très basse orbite terrestre (VLEO : Very Low Earth Orbit, apogée : 431 km, périgée : 245,30 km, et inclinaison : 81,14°) à Vandenberg AFB (Vandenberg Air Force Base, Californie, aux États-Unis) et n'est resté en orbite que pendant 22 jours.

Le 27 janvier 2000, le lancement d'ASU-OSCAR37, pesant 6 kg, à bord d'une fusée Minotaure-1, à partir de Vandenberg AFB, et sa mise sur orbite basse (apogée : 799 km; périgée : 746,30 km ; inclinaison : 100,19°) ont fait renaitre les nanosatellites pour radio amateur. Ce satellite est actuellement non-opérationnel.

Le 30 juin 2003, CubeSat-OSCAR 55, le premier nanosatellite réussi pour radio amateur qui ait fonctionné jusqu'à présent, a été lancé depuis la base de Baikonur Cosmodrome, au Kazakhstan, à bord d'un Dnepr et a été inséré en orbite basse terrestre (apogée : 831 km et périgée : 816,30 km ; inclinaison : 98,72°). Ce satellite est de taille $10 \times 10 \times 10$ cm³, et pèse 1 kg. Il s'agissait d'un projet du laboratoire Matunaga LSS (Laboratory for Space Systems) du Tokyo Institute of Technology, au Japon.

Un historique plus étendu des nanosatellites [8] est montré dans l'Annexe I, Tableau A.I.1.

II.1.2 Caractéristiques générales d'un système nanosatellitaire

A. <u>Architecture d'un système de communication par satellite</u>

Le système satellitaire est composé d'un segment spatial, d'un segment de contrôle et d'un segment terrestre. [1]

- Segment spatial : contient un ou plusieurs satellites actifs et satellites de secours organisés en constellation.
- Segment de contrôle : composé de toutes les installations terrestres dédiées au contrôle et à la surveillance des satellites, également nommées stations TTC (*Tracking, Telemetry, Command*), et également à la gestion du trafic et des ressources associées à bord du satellite (stations de gestion du réseau).
- Segment terrestre : se compose de toutes les stations terrestres.

Figure II.2 : Architecture d'un système de communication par satellite

B. <u>Types d'orbite</u>

La trajectoire du satellite dans l'espace est appelé son orbite, l'orientation du satellite dans l'espace est appelée son attitude. Il y a quatre types d'orbite principaux pour les communications par satellite [2] : LEO, MEO, GEO et HEO qui sont illustrés sur la Figure II.3 et caractérisés dans le Tableau II.1.

Types d'orbite	LEO (orbite polaire)	MEO	HEO (orbite de Molniya)	GEO	
Inclinaison	90°	Environ 50°	Environ 64°	0°	
Altitude	200 – 2000 km	2000 – 35 786 km	500 – 39 900 km	35 786 km	
Vélocité	6,5 – 8,2 km/s	6,9 - 7,8 km/s	1,5 – 10 km/s	3,1 km/s	
Période orbitale	1,5 – 2 h	5 – 10 h	12 h	24 h	
Durée de visibilité	15 – 20 mn	2 – 8 h	8 – 11 h	Permanente	
Retard de propagation	Quelques millisecondes	Dizaines de millisecondes	Centaines de millisecondes	>250 millisecondes	
Bilan de liaison	Favorable, compatible avec les petits satellites et les terminaux utilisateurs portables	Moins favorable	Pas favorable pour les petits terminaux portables	Pas favorable pour les petits terminaux portables	
Contraintes de l'environnement	Faibles	Faibles / moyennes	Moyennes / fortes	Faibles	
Couverture terrestre instantanée (diamètre à 10° d'élévation)	≈ 6000 km	≈ 12 000 –15 000 km	16 000 km (apogée)	16 000 km	
Exemples de systèmes	IRIDIUM, GLOBALSTAR TELEDESIC, SKYBRIDGE, ORBCOMM, etc.	ODYSSEY, INMARSAT P2, etc.	MOLNYA, ARCHIMEDE, etc.	INTELSAT, INTERSPOUTNIK, INMARSAT, etc.	
LEO : Low Earth Orbit MEO : Medium Earth Orbit HEO : High Earth Orbit GEO : GEostationary Orbit					

Tableau II.1 : Comparaison des orbites pour les communications par satellite

C. Bandes de fréquences

Les bandes de fréquences sont attribuées aux satellites selon les services de radiocommunications avec comme objectif de permettre une utilisation compatible avec les systèmes existants.

Les différentes bandes de fréquence utilisées dans les communications par satellite selon la norme IEEE américaine sont indiquées dans le Tableau II.2.

Appellation	Bande de fréquence
Bande HF (High Frequency)	3 – 30 MHz
Bande VHF (Very High Frequency)	30 – 300 MHz
Bande UHF (Ultra High Frequency)	300 – 1000 MHz
Bande L (Long Wave)	1 – 2 GHz
Bande S (Short Wave)	2 – 4 GHz
Bande C	4 – 8 GHz
Bande X	8 – 12 GHz
Bande Ku (Kurz-Under)	12 – 18 GHz
Bande K (Kurz)	18 – 27 GHz
Bande Ka (Kurz-Above)	27 – 40 GHz
Bande V	40 – 75 GHz
Bande W	75 – 110 GHz
Bande mm	110 – 300 GHz

Tableau II.2 : Bandes de fréquences des communications par satellite

II.2 Technologies nanosatellitaires

Au cours des dernières années, l'industrie aérospatiale, la communauté de la recherche et beaucoup de projets spatiaux menés dans les laboratoires universitaires et se sont concentrés sur le développement de nanosatellites qui constituent une technologie récente et aux très grandes potentialités.

Cette partie abordera les thèmes des caractéristiques des nanosatellites, de leurs avantages et inconvénients par rapport aux satellites traditionnels, du défi représenté par les nanosatellites et les sous-systèmes des nanosatellites.

II.2.1 <u>Caractéristiques des nanosatellites</u>

Les caractéristiques des nanosatellites [7] sont indiquées dans le Tableau II.3.

Masse	1 – 10 kg
	1 unité CubeSat (longueur × largeur × hauteur : environ $10 \times 10 \times 10$ cm ³)
	1,5 unité CubeSat $(10 \times 10 \times 15 \text{ cm}^3)$,
	2 unités CubeSat $(10 \times 10 \times 20 \text{ cm}^3)$,
Dimensions	3 unités CubeSat $(10 \times 10 \times 30 \text{ cm}^3)$,
	4 unités CubeSat $(10 \times 10 \times 40 \text{ cm}^3)$,
	5 unités CubeSat $(10 \times 10 \times 50 \text{ cm}^3)$,
	6 unités CubeSat $(10 \times 20 \times 30 \text{ cm}^3)$
T D D D	VLEO (Very Low Earth Orbit, altitude inférieure à 500 km) ou LEO (500 à
I ypes d'orbite	800 km)
	3,3 V; 5 V; 6,5 V; 8,2 V; 12 V; 12,5 V ou 24 V DC suivant la technologie
Source d'energie	de conception de l'alimentation de puissance.
Bande de fréquence	VHF (130-160 MHz) ou UHF (400-450 MHz)
Types de modulation	BPSK, FSK, AFSK ou GMSK
Puissance émise	750 mW ou 28,75 dBm en moyenne
Sensibilité du récepteur	Environ -100 dBm pour un TEB de 10 ⁻⁵

Débit descendant	1200, 2400, 4800 ou 9600 bit/s
Débit montant	De 300 à 1200 bit/s
Types de protocole de communication	Nombreux protocoles disponibles (AX. 25 pour la plupart des usages)
Nombre de nanosatellites nécessaires pour couvrir la Terre	30 à 60 nanosatellites, suivant l'altitude de l'orbite. Exemple : une constellation d'environ 60 nanosatellites israéliens en orbite terrestre basse (LEO) peut couvrir la Terre.
Coût	Inférieur à 1 million de dollars
Durée de vie	2 à 5 ans, suivant de nombreux paramètres tels que le type d'orbite, la charge utile, les cycles de l'alimentation, le lancement, etc.

Tableau II.3 : Caractéristiques des nanosatellites

II.2.2 <u>Sous-systèmes des nanosatellites</u>

Un système nanosatellitaire comprend un certain nombre de sous-systèmes [4] décrits ci-dessous :

Sous-système de détermination et de contrôle de l'attitude (ADC : Attitude Determination and Control subsystem) :

- Stabilisation et orientation du satellite dans la direction souhaitée (pour maintenir le faisceau de l'antenne RF pointé sur les zones destinées à la Terre) au cours de la mission, malgré les couples de perturbations externes et les forces agissant sur lui.

• Sous-système d'orientation et de navigation (GNC : *Guidance and Navigation subsystem*) :

- La *navigation* ou *détermination de l'orbite* signifie la détermination de la position et de la vitesse du satellite ou, de façon équivalente, des éléments orbitaux en fonction du temps.

- L'orientation ou contrôle d'orbite signifie ajustement de l'orbite pour satisfaire à certaines conditions prédéterminées.

Sous-système de poursuite, télémesure et commande (TT&C : *Tracking, Telemetry and Command*). Il assure l'interface entre les systèmes spatial et terrestre :

- La fonction de *poursuite* désigne la détermination de la position du vaisseau spatial et le suivi de ses déplacements en utilisant l'angle, la distance et la vitesse de l'information.

- La fonction de *télémesure* permet de collecter, coder et transmettre des informations pour les autres soussystèmes.

- L'élément de *commande* reçoit et exécute des commandes de contrôle à distance (télécommande) visant à effectuer des changements sur les fonctions de la plate-forme : configuration, position et vitesse.

• Sous-système de commande et de traitement des données (C&DH : *Command and Data Handling subsystem*) :

- Réception, validation et décodage des commandes, et distribution des commandes vers les sous-systèmes et constituants appropriés du satellite.

- Réception des données scientifiques et des données d'opération courante venant des autres sous-systèmes et composants du satellite, et empaquetage des données en vue de leur stockage sur un enregistreur de données ou transmission de ces données vers le sol via le sous-système communications.

- Sous-système d'alimentation électrique (EPS : *Electrical Power Subsystem*) :
 Le sous-système d'alimentation est constitué des panneaux solaires, des batteries de secours et des systèmes d'alimentation électrique qui délivrent la puissance électrique pour les divers sous-systèmes du satellite.
- Sous-système de contrôle thermique (TCS : *Thermal Control Subsystem*) :
 Maintien de la température de l'équipement intérieur et autour de la structure du satellite à l'intérieur des limites requises de température pour chaque phase de la mission.
- Sous-système structures et mécanismes :

- Supporte tous les autres sous-systèmes du véhicule spatial, attache le véhicule spatial à l'infrastructure de lancement.

• Sous-système antenne :

- Réception et transmission des signaux micro-ondes, transmis dans une bande de fréquence donnée et avec une polarisation donnée par les stations terrestres situées dans une région particulière sur la surface de la Terre.

- Sous-système communication de la charge utile :
 - Réception des signaux micro-ondes venant d'une zone terrestre donnée.
 - Amplification de la fréquence porteuse.
 - Conversion de la fréquence porteuse de la liaison montante vers la liaison descendante.
 - Transmission des signaux micro-ondes vers une zone terrestre donnée.

II.2.3 <u>Avantages et inconvénients des nanosatellites</u>

Les avantages et les inconvénients des nanosatellites par rapport aux satellites traditionnels [9] sont résumés dans le Tableau II.4.

« Plus rapide, plus petit, meilleur et moins cher »	
 Temps de construction plus rapide. 	
 Possibilité de rendre redondants les satellites, ce qui augmente la fiabilité du système. Réduction de la taille et du coût des stations terrestres. Solution idéale pour tester de nouvelles technologies. Possibilité d'être lancés en groupe ou en « Piggyback » avec de plus grands satellites. Réduction des coûts de fabrication et de lancement. Pertes financières minimisées en cas d'échec. 	 Décroissance orbitale plus rapide. Durée de vie plus courte. Puissance d'émission plus faible. Plus faible capacité d'emport matériel.

Tableau II.4 : Avantages et inconvénients des nanosatellites

II.2.4 Défis des nanosatellites

Les nanosatellites qui sont de masse réduite, à bas coût et dédiés à des missions en orbites VLEO ou LEO ont présenté des nouveaux défis pour la recherche tels que :

- Une nécessité de progrès dans les microtechnologies, la miniaturisation électronique, la manipulation et le stockage des données, la disponibilité de l'énergie, les technologies d'imagerie, l'intelligence autonome et les performances associées.
- L'apparition de nouveaux petits lanceurs sur le marché (par exemple : missiles militaires modifiés de longue portée et intercontinentaux, structure spéciale pour les charges utiles auxiliaires qui permet de lancer simultanément plusieurs petits satellites), requérant des innovations dans les systèmes de propulsion et d'autres technologies, ainsi que dans la mise en service et la gestion d'applications plus vastes dans les futurs systèmes de lancement.
- Une réduction continue de la complexité et des coûts des missions.
- L'émergence de nouveaux marchés potentiels avec les états et les clients commerciaux ou académiques.

II.3 Applications des nanosatellites

Les nanosatellites ont été utilisés dans diverses applications telles que [9] :

- Les télécommunications. De nombreuses applications peuvent être mentionnées, telles que :
 - Voix : téléphonie, téléphonie personnelle, téléphones publics distants.
 - Messagerie : radiomessagerie, relevé de compteur (meter reading).
 - Données : distribution de logiciels, bases de données, email, réseau de terminaux VSAT, etc.
 - Diffusion : radio numérique, télévision radiodiffusée, télédiffusion directe.
 - Multimédia : télémédecine, téléenseignement, téléconférence, télétravail, vidéo à la demande, téléachat,
 - Internet.
- L'observation de la Terre. Cela couvre les activités liées à la collecte des données et des images pour les prévisions de tremblements de terre, de tempêtes et d'activités volcaniques.

- La *recherche scientifique*. Les nanosatellites peuvent être un moyen économique et rapide d'explorer des objectifs scientifiques à petite échelle et bien ciblés (par exemple : surveillance de l'environnement des rayonnements dans l'espace, mise à jour du champ de référence géomagnétique international, etc.) ou de fournir un démonstrateur de concepts opérationnels avant le développement de l'instrumentation à grande échelle.
- Les *démonstrations des technologies*. Les nanosatellites peuvent être un moyen attrayant et à faible coût de tester, vérifier et évaluer des nouvelles technologies ou des services sur un environnement orbital réel avec des risques acceptables avant la mise en œuvre d'une mission coûteuse en grandeur nature.
- Les *applications militaires*. Les nanosatellites peuvent être utilisés dans un but militaire, le plus souvent pour rassembler des renseignements (satellites de communication), ou alors comme une arme militaire.
- La formation académique. Les programmes dédiés aux nanosatellites sont un moyen de renforcer l'expertise industrielle et de former des étudiants, des scientifiques et des ingénieurs dans les compétences liées à l'espace, en leur permettant d'avoir une expérience pratique de toutes les étapes (techniques et de gestion) d'une mission spatiale particulière (depuis la conception, la production, le test, jusqu'au lancement et à l'exploitation orbitale).

II.4 Conclusion

Au travers de ce chapitre, la problématique des nanosatellites a été introduite, en commençant par un bref historique ; les technologies des nanosatellites et leurs applications ont été décrites en passant par une vue ensemble d'un système nanosatellitaire incluant, les caractéristiques générales d'un tel système, les caractéristiques des nanosatellites, leurs sous-systèmes, les avantages et inconvénients des nanosatellites, les défis des nanosatellite, et les applications des nanosatellites. Ces informations de base nous aideront à entrer dans le prochain chapitre qui décrira des éléments de conception d'un système nanosatellitaire.

CHAPITRE III

Partie théorique : éléments de conception d'un système nanosatellitaire

Dans le chapitre II, une vue d'ensemble d'un système nanosatellitaire, avec ses technologies et applications associées, a été décrite. Ce chapitre III abordera quelques éléments de conception d'un système nanosatellitaire liés à son architecture générale, à sa couche physique et sa couche liaison, à la détermination de l'orbite, à l'optimisation d'une constellation de nanosatellites, et aux bilans de liaison.

III.1 Définition de la mission

Pour simplifier le travail, on s'appuiera sur les hypothèses prises pour le nanosatellite OUFTI-1 qui a été développé pour des applications de télécommunications (radio amateur) par l'Université de Liège en Belgique. Les principales hypothèses sont résumées dans le Tableau III.1. Le nanosatellite fictif qui sera l'objet de l'étude sera appelé, par la suite et tout au long du rapport, KAMPUCH-1.

Masse	1 kg
Dimensions	1 unité CubeSat (longueur × largeur × hauteur : environ $10 \times 10 \times 10$ cm ³)
Type d'orbite	LEO Apogée (h_a) : 1447 km Périgée (h_p) : 354 km
Inclinaison (i)	71°
Argument de périgée (Ω)	30° (défini pour les simulations)
R.A.A.N (ω)	45° (défini pour les simulations)
Anomalie vraie (V)	15° (défini pour les simulations)
Élévation (δ)	5°
Bande de fréquence	 Bande VHF : 145 MHz pour la liaison descendante Bande UHF : 435 MHz pour la liaison montante
Source d'énergie	Batterie : de 3,3 à 7,2 V. Elle se compose de trois convertisseurs fournissant trois tensions différentes (3,3 V ; 5 V ; 7,2 V) pour alimenter les divers sous- systèmes suivant la tension requise.
Types de protocole	 D-STAR : utilisé dans les communications de radio amateur de la charge utile AX.25 : utilisé pour la télémétrie / télécommande (TM/TC) Balise : utilisée pour envoyer 12 paramètres critiques en code Morse
Débits	 D-STAR : 4800 bit/s AX.25 : 9600 bit/s Balise : 12 mots par minute
Types de modulation	 D-STAR : GMSK¹ AX.25 : FSK Balise : GMSK or FSK (défini par l'utilisateur)
Puissance émise	- D-STAR; AX.25 : environ 750 mW ou +28,7 dBm - Balise : environ 100 mW ou +20 dBm
Sensibilité du récepteur	Inférieure à -100 dBm pour un TEB (Taux d'Erreur Binaire) de 10 ⁻⁵
Coût	Inférieur à 1 million de dollars
Durée de vie	1 à 2 ans (4,8 ans estimé par STK)

Tableau III.1 : Caractéristiques du nanosatellite KAMPUCH-1

¹ GMSK (Gaussian Minimum Shift Keying) est une modulation FSK à phase continue. Les informations numériques sont filtrées par un filtre gaussien afin de diminuer la bande passante (ou la puissance de la bande latérale) avant d'être appliquées à une modulation FSK. 0,5-GMSK désigne la modulation GMSK caractérisée par un produit bande passante × durée symbole de 0,5, lequel offre une haute efficacité spectrale. La réduction de la bande passante vient cependant aux dépens des interférences inter-symboles (Inter-Symbol Interference, ISI). C'est pourquoi la modulation GMSK requiert un rapport signal sur bruit E_b/N_0 plus élevé pour obtenir le même TEB.

III.2 Architecture système

Un système satellitaire comporte trois segments : le segment spatial, le segment de contrôle et le segment terrestre. Dans notre cas de figure, il n'y aura que deux segments : le segment spatial et le segment terrestre car le segment de contrôle est considéré inclus dans le segment terrestre. Cette section va aborder l'architecture du segment terrestre, en donnant un aperçu de la station terrestre, du centre de contrôle de mission (*Mission Control Center*, MCC) et du relais D-STAR [4].

III.2.1 Architecture du segment spatial

L'architecture du segment spatial, qui est illustrée sur la Figure III.1, comprend un ou plusieurs satellites actifs et des satellites de secours organisés en constellation.

III.2.2 Architecture du segment terrestre

L'architecture du segment terrestre se compose des quatre éléments : la station terrestre (en anglais : *Ground Station*), le centre de contrôle de mission (en anglais : *Mission Control Center*, MCC), le relais D-STAR (en anglais : *D-Star Repeater*), et le module D-STAR de communication par satellite (en anglais : *Satellite Extension*). L'architecture du segment terrestre est illustrée sur la Figure III.2.

A. <u>Station terrestre</u>

La station terrestre est responsable de :

- la liaison RF entre les satellites et le système terrestre. Elle contrôle les rotors d'antenne, le contrôleur du nœud terminal (en anglais : *Terminal Node Controller, TNC*), et les émetteurs-récepteurs utilisés ;
 - la liaison entre la station MCC et toutes les stations terrestres ou tous les réseaux des stations terrestres.

B. <u>Centre de contrôle de mission</u>

Le centre de contrôle de mission du système KAMPUCH-1 permet aux opérateurs de commander et de contrôler les nanosatellites depuis des terminaux via le serveur opérationnel. Il est conçu pour exécuter les fonctions suivantes :

- préparation et transmission des télécommandes manuellement et automatiquement ;
- réception et traitement des télémesures manuellement et automatiquement ;
- collecte et récupération des données ;

- affichage des données ;
- mises à jour en temps réel.

C. <u>Relais D-STAR</u>

Le système D-STAR (en anglais : « *Digital Smart Technologies for Amateur-Radio* ») est un système de télécommunications numériques développé par le « *Japanese Amateur-Radio League* » (JARL) en 2003. C'est la charge utile principale du système de communication du nanosatellite KAMPUCH-1 et qui est utilisée pour les communications de radio amateur (en anglais : *ham-radio communication*).

Caractéristiques du D-STAR

Les principales caractéristiques du D-STAR sont décrites ci-dessous :

- Il offre deux modes de communication, le mode DD (en anglais : *Digital Data*) et le mode DV (en anglais : *Digital Voice*). Le mode DD transmet et reçoit seulement des données, avec un débit de 128 kbit/s, tandis que le mode DV transmet des voix et des données simultanément, avec un débit de 4,8 kbit/s (données : 1,2 kbit/s et voix : 3,6 kbit/s avec codage AMBE et modulation GMSK). Le mode DV peut fonctionner dans la bande 144 MHz (VHF), 440 MHz (UHF), et 1,2 GHz (bande L), tandis que le mode DD n'exige que la bande 1,2 GHz (bande L). Le mode DV qui présente un intérêt à KAMPUCH-1 fournit une bande passante limitée d'environ 6 kHz.
- Le D-STAR utilise la modulation GMSK avec un produit de 0,5 de la durée symbole et de la bande passante, dénotée 0,5-GMSK qui offre une grande efficacité de la bande passante.

D. <u>Module D-STAR de communication par satellite</u>

Le module D-STAR de communication par satellite (en anglais : *Satellite Extension*) doit être ajouté entre le relais D-STAR et le satellite KAMPUCH-1 pour rendre le système de communication complètement compatible avec le réseau D-STAR.

III.3 Couche physique et couche liaison

Cette section abordera succinctement la couche physique et la couche liaison, et décrira le protocole AX.25, le protocole D-STAR et la balise ([7], [8]). Une description plus détaillée est fournie en Annexe II, A.II.1.

Le nanosatellite KAMPUCH-1 utilise deux types de modulation : avec le protocole AX.25 et la balise, la modulation 2-FSK pour la voie de télémesure et télécommande (TM/TC), et avec le protocole D-STAR la modulation 0,5-GMSK pour les communications de radio amateur. Les valeurs d' E_b/N_0 requises suivant le schéma de modulation et codage et le TEB requis sont montrées dans le Tableau III.2. Les options sélectionnables dans l'outil de calcul de bilan de liaison Excel développé et utilisé au cours de ce stage (cf. section *§III.6 Bilans de liaison*) sont : AFSK/FM (en anglais : *Audio Frequency Shift Keying on an FM Carrier*), une forme spéciale de la modulation FSK développée par M. James Miller et nommée « G3RUH», la démodulation FSK non-cohérente (en anglais : *Non-Coherent FSK*), GMSK, BPSK et QPSK.

Type de modulation	Codage	TEB	E _b /N ₀ requis [dB]
AFSK/FM	aucun	10-5	23,2
AFSK/FM	aucun	10-4	21,0
G3RUH FSK	aucun	10-5	18,0
G3RUH FSK	aucun	10 ⁻⁴	16,7
FSK non-cohérente	aucun	10-5	13,8
FSK non-cohérente	aucun	10 ⁻⁴	13,4
FSK cohérente	aucun	10-5	11,9
FSK cohérente	aucun	10-4	10,5
BPSK	aucun	10-6	10,5
QPSK	aucun	10-6	10,5
GMSK	aucun	10-5	9,6
BPSK	aucun	10-5	9,6
QPSK	aucun	10-5	9,6
GMSK	aucun	10-4	8,4

BPSK	Codage convolutionnel ² ($R=1/2$, $K=7$)	10-6	4,8
BPSK	Convolutionnel ($R=1/2$, $K=7$) et RS^3 (255,223)	10-6	2,5
BPSK	Convolutionnel (R=1/6, K=15) et RS (255, 223)	10-7	0,8

Tableau III.2 : Performances en E_b/N₀ suivant le schéma de modulation et codage

III.3.1 Protocole AX.25

Le nom AX.25 provient de la recommandation X.25 du CCITT, l'ajout de la lettre *A* signifiant « Amateur ». Par conséquent, AX.25 est un protocole de la couche liaison pour la radio amateur en mode paquet. Pour KAMPUCH-1, le protocole AX.25 sera utilisé pour la voie TM/TC avec la modulation 2-FSK, et un débit de 9,6 kbit/s. Il y a trois types généraux de trame AX.25 (structure montrée en Annexe II, A.II.1 A) :

- 1. trame utile (trame I, en anglais : Information frame, I frame);
- 2. trame de surveillance (trame S, en anglais : Supervisory frame, S frame) ;
- 3. trame non-numérotée (trame U, en anglais : Unnumbered frame, U frame).

III.3.2 Protocole D-STAR

Le protocole D-STAR offre deux modes de communication : le mode DV (*Digital Voice*) et le mode DD (*Digital Data*). Le mode DV peut opérer dans les bandes de fréquence 144 MHz (bande VHF), 440 MHz (bande UHF), et 1,2 GHz (bande L), tandis que le mode DD n'exige que la bande 1,2 GHz.

KAMPUCH-1 utilise le mode DV (4,8 kbit/s) avec le protocole D-STAR et la modulation GMSK pour des communications de radio amateur. La structure de la trame D-STAR en mode DV est montrée en Annexe II, A.II.1 B.

III.3.3 <u>Balise</u>

Pour KAMPUCH-1, la balise, avec un débit de 12 mots par minute et la modulation 2-FSK, est utilisée pour transmettre 12 paramètres critiques en code Morse. La structure de la trame de la balise est montrée en Annexe II, A.II.1 C.

III.4 Détermination de l'orbite

Cette section s'intéresse à la détermination de l'orbite d'un nanosatellite.

III.4.1 Éléments orbitaux classiques

Les éléments orbitaux dits de Kepler ou classiques [5] sont utiles pour les opérations spatiales et pour déterminer quatre paramètres au sujet de l'orbite, à savoir : la taille de l'orbite, la forme de l'orbite, l'orientation du plan dans l'espace et la position du satellite. Ces éléments orbitaux classiques sont indiqués dans le Tableau III.3 et illustrés sur la Figure III.3.

Il y a lieu de définir maintenant quelques termes courants de mécanique orbitale :

- *Périgée* : Le point où le satellite est le plus proche de la Terre.
- *Apogée* : Le point où le satellite est le plus éloigné de la Terre.
- Orbite équatoriale : inclinaison $i = 0^\circ$ ou 180°, le plan de l'orbite est contenu dans le plan équatorial.

 $^{^2}$ Codage convolutionnel : un code convolutionnel opère au niveau de l'octet, et les bits complémentaires sont ajoutés à chaque mot. Cependant, les erreurs sont corrigées sur une base séquentielle (bit par bit). Le plus populaire de ces méthodes est le système de codage ou de décodage convolutionnel de Viterbi, ainsi nommé par référence à son inventeur, Andrew Viterbi. Il y a deux paramètres qui configurent le degré du codage : le taux de codage R et la longueur de contrainte K du code. La longueur de contrainte K est le nombre des symboles en sortie qui sont affectés par les symboles d'entrée. Un exemple de codage convolutionnel est le code de Viterbi (R=1/2, K=7). ³ Code bloc : un décodeur bloc opère sur un bloc entier de données. Les bits supplémentaires de codage sont ajoutés à la fin

³ Code bloc : un décodeur bloc opère sur un bloc entier de données. Les bits supplémentaires de codage sont ajoutés à la fin du bloc. Le plus populaire des codages bloc est connu sous le nom de « Reed-Solomon » (RS), bien qu'il y ait beaucoup d'autres formes de codage bloc. Pour le codage RS, deux paramètres sont utilisés : la longueur n (en octets) du bloc de symboles de données utiles et la longueur k (en octets) du bloc de symboles du mot code (en anglais : *code word*). L'encodeur code un bloc de n symboles de données utiles (bits) en un mot code de k symboles. Donc les erreurs sont corrigées au niveau bloc (ou trame). Voici un exemple de codeur Reed-Solomon : k = 255 octets, n = 223 octets.

- *Orbite prograde* : $0^{\circ} \le i < 90^{\circ}$, le satellite gravite dans la même direction que la Terre (rotation vers l'Est autour de la Terre).
- Orbite polaire : $i = 90^{\circ}$, le satellite gravite au-dessus des pôles.
- Orbite rétrograde : 90° < i ≤ 180°, le satellite gravite dans la direction opposée à la rotation de la Terre (rotation vers l'Ouest autour de la Terre).
- *Axe d'équinoxe vernal* : axe qui est pris comme la direction principale du centre du Soleil au centre de la Terre, le premier jour du printemps.

Élément	Nom	Description	Définition	Remarque
а	Demi-grand axe	Taille de l'orbite	La moitié de la distance entre l'apogée et le périgée de l'ellipse	La période orbitale et l'énergie dépendent de la taille de l'orbite.
е	Excentricité	Forme de l'orbite	Le rapport de la moitié de la distance séparant les foyers (c) et du demi-grand axe	- Cercle : <i>e</i> = 0 - Ellipse : <i>e</i> < 1 - Parabole : <i>e</i> = 1 - Hyperbole : <i>e</i> > 1
i	Inclinaison	Orientation du plan orbital (inclinaison du plan orbital)	L'angle entre le plan orbital et le plan équatorial, mesuré dans le sens antihoraire au nœud ascendant.	- Équatorial : $i = 0^{\circ}$ ou 180° - Prograde : $0^{\circ} \le i < 90^{\circ}$ - Polaire : $i = 90^{\circ}$ - Rétrograde : $90^{\circ} < i \le 180^{\circ}$
Ω	R.A.A.N : ascension droite du nœud ascendant	Rotation du plan orbital autour de la Terre	L'angle, mesuré vers l'Est, entre l'équinoxe vernal et le nœud ascendant	$0^\circ \le \Omega < 360^\circ$
ω	Argument du périgée	Orientation de l'orbite dans le plan orbital	L'angle, mesuré dans le sens du mouvement du satellite, formé entre le nœud ascendant et le périgée	$0^{\circ} \leq \omega < 360^{\circ}$
v	Anomalie vraie	Position du satellite sur son orbite	Angle, mesuré dans le sens du mouvement du satellite, du périgée à la position du satellite	$0^\circ \le v < 360^\circ$

Tableau III.3 : Éléments orbitaux classiques

III.4.2 <u>Caractérisation des orbites</u>

Les principaux paramètres caractérisant les différents types d'orbite sont indiqués dans le Tableau III.4 [5]. Les paramètres orbitaux complets sont donnés en Annexe II, A.II.4 A. On y trouvera également une brève explication des relations qui lient certains paramètres à d'autres.

Types d'orbite Paramètres orbitaux		Elliptique				Circulaire
		LEO	VLEO	MEO "Molniya "	MEO "Tundra"	LEO
Altitude de l'apogée (h_a)	[km]	1447,00	370,00	39105,00	46340,00	650,00
Altitude du périgée (h_p)	[km]	354,00	368,00	1250,00	25231,00	650,00
Inclinaison (i)	[degrés]	71,00°	40,02°	63,4°	63,4°	72°
R.A.A.N (Ω)	[degrés]	45,00	45,00	45,00	45,00	45,00
Argument du périgée (ω)	[degrés]	30,00	30,00	30,00	30,00	0,00
Anomalie vraie (v)	[degrés]	15,00	15,00	15,00	15,00	45,00

Tableau III.4 : Différents types d'orbites

III.4.3 <u>Zone de couverture, durée de visibilité et nombre de satellites nécessaires pour une couverture</u> <u>continue</u>

La zone de couverture et la durée de visibilité dépendent de deux paramètres : l'altitude de l'orbite et l'angle d'élévation.

Les résultats concernant la zone de couverture, la durée de visibilité et le nombre des satellites nécessaires par plan (N) pour assurer une couverture continue sous la trace de l'orbite sont indiqués dans le Tableau III.5. Ils ont été estimés pour les différents types d'orbite aux altitudes minimale, maximale et moyenne (pour les orbites elliptiques) du satellite, ou à une altitude constante du satellite (pour les orbites circulaires), et avec un angle d'élévation de 5°. L'influence de l'angle d'élévation sur ces mêmes paramètres pour le cas particulier d'une orbite LEO elliptique peut être observée dans le Tableau III.6. Tous ces résultats ont été obtenus sous Matlab en appliquant les formules données dans l'Annexe II, A.II.2. Nous pouvons observer que :

- Si l'altitude d'orbite $\uparrow \Rightarrow$ la zone de couverture \uparrow et la vélocité du satellite $\downarrow \Rightarrow$ la durée de visibilité \uparrow
- \Rightarrow le nombre N de satellites nécessaires pour assurer une couverture continue sous la trace de l'orbite \downarrow .
- Si l'angle d'élévation $\downarrow \Rightarrow$ la zone de couverture $\uparrow \Rightarrow$ la durée de visibilité $\uparrow \Rightarrow$ le nombre N des satellites nécessaires pour assurer une couverture continue sous la trace de l'orbite \downarrow .

Tune d'aubite		LEO elliptique , période orbitale (T) = 103,00 minutes			
i ype a orbite		Altitude minimale	Altitude maximale	Altitude moyenne	
Altitude de l'orbite	[km]	354,00	1447,00	900,50	
Rayon de l'orbite	[km]	6732,14	7825,14	7278,64	
Angle de nadir	[Degrés]	54,29	70,70	60,80	
Angle central	[Degrés]	14,30	30,71	24,20	
Longueur de l'empreinte	[km]	3183,34	6837,25	5387,20	
Superficie de l'empreinte	[km ²]	7917743,81	35845129,46	22457032,18	
Vélocité du satellite	[m/s]	6863,96	7978,36	7400,21	
Durée de visibilité	[minutes]	6,65	16,60	12,13	
Nombre de satellites nécessair	res pour	-	10	0	
une couverture continue, N	1	7	16	9	
· · · · · · · · · · · · · · · · · · ·		VLEO elliptique pé	riode orbitale $(T) = 91.9$	3 minutes	
Type d'orbite		Altitudo minimolo	Altitudo movimelo	Altitudo movonno	
		Annuue minimale	Altitude maximale	Annual moyenne	
Altitude de l'orbite	[km]	368.00	370.00	369.00	
Rayon de l'orbite	[km]	6746 14	6748 14	6747 14	
Angle de nadir	[Dográc]	70.22	70.27	70.24	
Angle central	[Degrés]	14.62	14.69	14.66	
L'anguaur de l'amprainte	[Degres]	2259 21	2268.00	2262.61	
Superficie de l'empreinte	[KIII] [1:m ²]	9202022 29	5206,90 8246702.02	9210966 42	
Superficie de l'empreinte		8293032,38	8340703,93	8519800,45	
Velocite du satellite	[m/s]	7085,02	7087,30	/080,10	
Duree de visibilite	[minutes]	/,00	7,09	7,08	
Nombre de satellites necessair	es pour	13	14	13	
une couverture continue, N					
Type d'orbite		MEO "Molniya" ell	iptique, période orbitale	(T) = 717,79 minutes	
		Altitude minimale	Altitude maximale	Altitude moyenne	
	[1]]	1250.00	20105-00	20177.50	
Attitude de l'orbite	[KM]	1250,00	39105,00	20177,50	
Rayon de l'orbite	[km]	/628,14	45483,14	26555,64	
Angle de nadir	[Degres]	8,03	56,40	13,84	
Angle central	[Degrés]	28,60	76,97	71,16	
Longueur de l'empreinte	[km]	6366,78	17136,45	15842,27	
Superficie de l'empreinte	[km²]	31181392,57	19/9/3/0/,52	173048953,63	
Vélocité du satellite	[m/s]	1586,63	9460,34	38/4,28	
Durée de visibilité	[minutes]	11,22	180,01	68,15	
Nombre de satellites nécessaires pour		4	64	11	
une couverture continue, N		-	•		
		MEO "Tundra" elli	ptique, période orbitale	(T) = 1436,04	
Type d'orbite		minutes			
		Altitude minimale	Altitude maximale	Altitude moyenne	
Altitude de l'orbite	[km]	25231,00	46340,00	35785,50	
Rayon de l'orbite	[km]	31609,14	52718,14	42163,64	
Angle de nadir	[Degrés]	6.92	11.60	8.67	
Angle central	[Degrés]	73.40	78.08	76.33	
T 1 12	[km]	16342.54	17383.11	16994.65	
Longueur de l'empreinte	INDU				

Superficie de l'empreinte	$[km^2]$	182596906,84	202799432,66	195209174,85
Vélocité du satellite	[m/s]	2380,82	3970,76	3074,68
Durée de visibilité	[minutes]	68,60	121,69	92,12
Nombre de satellites nécessair	es pour	12	21	16
une couverture continue, N				10
Type d'orbite		LEO circulaire, péri	iode orbitale $(T) = 97,73$	3 minutes
Altitude de l'orbite	[km]	650,00		
Rayon de l'orbite	[km]	7028,14		
Angle de nadir	[Degrés]	64,70		
Angle central	[Degrés]	20,30		
Longueur de l'empreinte	[km]	4520,21		
Superficie de l'empreinte	$[km^2]$	15880252,72		
Vélocité du satellite	[m/s]	7530,94		
Durée de visibilité	[minutes]	10,00		
Nombre de satellites nécessaires pour		10		
une couverture continue, N		10		

Tableau III.5 : Zone de couverture, durée de visibilité et nombre de satellites pour assurer une couverture continue de la Terre pour différents types d'orbite

	LEO elliptique , période orbitale $(T) = 103,00$ minutes								
Angle d'élévation	Longueur de l'empreinte	Superficie de l'empreinte	Vélocité du satellite	Durée de visibilité	Nombre des satellites nécessaires pour une				
[Degrés]	[km]	[km ²]	[m/s]	[minutes]	couverture continue, N				
5	3183,34	7917743,81	7978,36	6,65	7				
10	2468,83	4772173,12	7978,36	5,16	8				
15	1953,71	2991997,38	7978,36	4,08	9				
20	1578,85	1955314,94	7978,36	3,30	10				
25	1299,00	1324138,92	7978,36	2,71	11				

Tableau III.6 : Zone de couverture, durée de visibilité et nombre des satellites pour assurer une couverture continue de la Terre pour différents angles d'élévation

III.4.4 <u>Temps de vol du périgée à l'anomalie vraie initiale</u>

Les valeurs du temps de vol (*Time Of Flight : TOF*) du périgée à l'anomalie vraie initiale pour les différents types d'orbite sont indiquées dans le Tableau III.7, et ont été obtenues en appliquant les formules de l'Annexe II, A.II.2.

	Valeur initiale de l'excentricité (E) [rad]	Anomalie moyenne (M) [rad]	Anomalie vraie initiale (v) [degrés]	Temps de vol [minutes]
LEO elliptique	0,24	0,22	15	3,69
VLEO elliptique	0,26	0,26	15	3,83
MEO "Molniya" elliptique	0,11	0,03	15	3,55
MEO "Tundra" elliptique	0,20	0,15	15	34,89
LEO circulaire	0,79	0,79	45	12,22

Tableau III.7 : Temps de vol du périgée à l'anomalie vraie initiale pour différents types d'orbite

III.5 <u>Constellation de satellites</u>

Comme un satellite peut couvrir seulement une portion limitée de la Terre à un instant particulier, une constellation de satellites, qui est un groupe de satellites semblables qui sont synchronisés pour graviter autour de la Terre d'une certaine façon optimale (au sens du nombre total de satellites nécessaires qui doit être minimal), est nécessaire pour garantir une couverture continue de la Terre ou une couverture (continue) pour une zone spécifique. Par conséquent, le problème de la conception d'une constellation se résume à la question : « Quelle est la combinaison d'orbites qui fournit la couverture optimale pour toutes les stations au sol? » Une combinaison d'orbites est liée à de nombreux paramètres qui doivent être envisagés, parmi lesquels les

caractéristiques des orbites (excentricité, inclinaison, altitude, etc.), la durée de visibilité, l'espacement relatif entre les satellites dans les plans adjacents ou l'espacement F entre les plans dans une constellation de Walker, etc.

Pour simplifier le problème de la conception d'une constellation de satellites, un ou plusieurs paramètres sont supposés fixes comme l'inclinaison, l'espacement F entre les plans dans une constellation de Walker, l'altitude de l'orbite du satellite, etc. pour trouver la constellation optimale. Les constellations de satellites sont classées en deux catégories : *constellations d'orbites circulaires* et *constellations d'orbites elliptiques*. Les résultats obtenus pour ces deux types de constellation sont donnés dans les sections qui suivent.

III.5.1 Constellations d'orbites circulaires

Il y a deux types de base de méthodes de conception de constellations d'orbites circulaires : elles relèvent de la méthode générale appelée « rue de couverture » (*street of coverage*) : constellations « Walker Star » et « Walker Delta » [3].

A. Walker Star

On se reportera à l'Annexe A.II.5 A pour une description de ce type de constellation. Le nombre approximatif de plans et le nombre total approximatif de satellites sont donnés dans le Tableau III.8. Les résultats dans ce tableau ont été estimés pour différents types d'orbite, respectivement aux altitudes minimale, maximale et moyenne (pour les orbites elliptiques) du satellite, ou à une altitude constante du satellite (pour les orbites circulaires), et avec un angle d'élévation de 5°, et calculés sous Matlab avec une valeur approximative de l'angle central de la Terre et un nombre N de satellites requis par plan tels qu'estimés dans la section III.4.3, et indiqués dans le Tableau III.5.

Type d'orbite		LEO elliptique			
		Altitude minimale	Altitude maximale	Altitude moyenne	
Angle central	[degrés]	14,30	30,71	24,20	
Nombre de satellites requis par j	olan, N	7	16	9	
Largueur de la rue	[degrés]	8,88	17,40	13,91	
Rue de la couverture (SOC)	[degrés]	17,76	34,79	27,82	
D_SD	[degrés]	23,18	48,11	38,11	
D_OD	[degrés]	17,76	34,79	27,82	
Nombre de plans, P		5	8	5	
Nombre total de satellites, TNOS	S	35	128	45	
Type d'orbite			VLEO elliptique		
		Altitude minimale	Altitude maximale	Altitude moyenne	
Angle central	[degrés]	14,63	14,68	14,66	
Nombre de satellites requis par j	olan, N	13	14	13	
Largueur de la rue	[degrés]	4,93	7,05	4,86	
Rue de couverture (SOC)	[degrés]	9,87	14,10	9,72	
D_SD	[degrés]	19,57	21,73	19,52	
D_OD	[degrés]	9,87	14,10	9,72	
Nombre de plans, P		9	10	10	
Nombre total de satellites, TNOS	S	117	140	130	
Type d'orbite		MEO "Molniya" elliptique			
••		Altitude minimale	Altitude maximale	Altitude moyenne	
Angle central	[degrés]	28,60	76,97	71,16	
Nombre de satellites requis par	olan, N	4	64	11	
Largueur de la rue	[degrés]	28,47	71,41	70,33	
Rue de couverture (SOC)	[degrés]	56,94	142,81	140,66	
D_SD	[degrés]	57,07	148,38	141,49	
D_OD	[degrés]	56,94	142,81	140,66	
Nombre de plans, P		2	4	2	
Nombre total de satellites, TNOS	S	8	256	22	

Type d'orbite		MEO "Tundra" elliptique			
		Altitude minimale	Altitude maximale	Altitude moyenne	
Angle central	[degrés]	73,40	78,08	76,33	
Nombre de satellites requis par	plan, N	12	21	16	
Largueur de la rue	[degrés]	73,21	77,65	76,06	
Rue de couverture (SOC)	[degrés]	146,42	155,30	152,12	
D_SD	[degrés]	146,61	155,73	152,39	
D_OD	[degrés]	146,42	155,30	152,12	
Nombre de plans, P		2	2	2	
Nombre total de satellites, TNO	S	24	42	32	
Type d'orbite			LEO circulaire		
Angle central	[degrés]	20,30			
Nombre de satellites requis par	plan, N	10			
Largueur de la rue	[degrés]	9,55			
Rue de couverture (SOC)	[degrés]	19,10			
D_SD	[degrés]	29,85			
D_OD	[degrés]	19,10			
Nombre de plans, P		7			
Nombre total de satellites, TNO	S	70			

Tableau III.8 : Détermination des constellations optimales par la méthode « Walker Star »

Il faut se garder à l'esprit un certain nombre de limitations de la constellation « Walker Star » :

- La distance de séparation perpendiculaire *D_SD* ou *D_OD* est minimale au niveau du pôle et maximale à l'équateur. Par conséquent, pour couvrir la Terre, la rue de couverture de chaque plan orbital doit être espacée uniformément d'une distance d'environ la moitié de l'équateur afin que chaque rue de couverture touche sa voisine.
- La constellation « Walker Star » nécessite considérablement plus de satellites que les autres types de constellation pour couvrir la Terre quand il y a beaucoup de points de croisements (ou chevauchement des empreintes des satellites).
- Aux pôles, le chevauchement des empreintes des satellites vont provoquer des interférences et des couvertures multiples. De plus, les vélocités relatives plus élevées des satellites traversant les plans voisins vont rendre le maintien des liaisons inter-satellites (*Inter-Satellite Link : ISL*) très difficile à cause du décalage Doppler (*Doppler shift*). Pour éviter ces problèmes, certaines empreintes doivent être désactivées, et cela nécessite également des moyens sophistiqués de poursuite des satellites, de commutation entre deux satellites voisins et de rétablissement des liens.

B. <u>Walker Delta</u>

Le principe de la constellation « Walker Delta » est explicitée en Annexe A.II.5 B.

Le nombre approximatif de plans et de satellites requis par plan pour les différents types d'orbite en utilisant cette constellation sont donnés dans le Tableau III.9.

Constellation « Walker Delta » (<i>i</i> : <i>T/P/F</i>)						
Type d'orbite		LEO elliptique				
Inclinaison (<i>i</i>)	[degrés]	71				
Espacement des plans (F)		1				
		Altitude minimale	Altitude maximale	Altitude moyenne		
Nombre de plans (<i>P</i>)		5	8	5		
Nombre total de satellites (<i>T</i>)		35	128	45		
Unité modèle (Pattern Unit, PU=360°/T)	[degrés]	10,29	2,81	8		
Espacement des nœuds	[degrés]	72	45	72		
Espacement des satellites dans le plan	[degrés]	51,43	22,5	40		
Différence de phase entre les plans adjacents	[degrés]	10,29	2,81	8		
Type d'orbite		VLEO	elliptique			

Inclinaison (<i>i</i>)	[degrés]	40,02		
Espacement des plans (F)		1		
		Altitude	Altitude	Altitude
		minimale	maximale	moyenne
Nombre de plans (P)		9	10	10
Nombre total de satellites (<i>T</i>)		117	140	130
Unité modèle (Pattern Unit, PU)	[degrés]	3,08	2,57	2,77
Espacement des nœuds	[degrés]	40,00	36,00	36
Espacement des satellites dans le plan	[degrés]	27,69	25,71	27,69
Différence de phase entre les plans adjacents	[degrés]	3,08	2,57	2,77
Type d'orbite		MEO "Molı	niya" elliptique	
Inclinaison (<i>i</i>)	[degrés]	63,40		
Espacement des plans (F)		1		
		Altitude	Altitude	Altitude
		minimale	maximale	moyenne
Nombre de plans (P)		2	4	2
Nombre total de satellites (<i>T</i>)		8	256	22
Unité modèle (Pattern Unit, PU)	[degrés]	45,00	1,41	16,36
Espacement des nœuds	[degrés]	180,00	90,00	180,00
Espacement des satellites dans le plan	[degrés]	90,00	5,63	32,73
Différence de phase entre les plans adjacents	[degrée]	45.00	1 41	1636
Différence de pliase entre les plans adjacents	[ucgres]	ч3,00	1,71	10,50
Type d'orbite		MEO "Tun	dra" elliptique	10,50
Type d'orbite Inclinaison (i)	[degrés]	MEO "Tun 63,40	dra" elliptique	10,50
Type d'orbite Inclinaison (i) Espacement des plans (F)	[degrés]	MEO "Tun 63,40 1	dra" elliptique	10,50
Type d'orbite Inclinaison (i) Espacement des plans (F)	[degrés]	MEO "Tun 63,40 1 Altitude	dra" elliptique	Altitude
Type d'orbite Inclinaison (i) Espacement des plans (F)	[degrés]	MEO "Tun 63,40 1 Altitude minimale	dra" elliptique Altitude maximale	Altitude moyenne
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P)	[degrés]	MEO "Tun 63,40 1 Altitude minimale 2	Altitude maximale 2	Altitude moyenne 2
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T)	[degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24	Altitude maximale 2 42	Altitude moyenne 2 32
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU)	[degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00	Altitude maximale 2 42 8,57	Altitude moyenne 2 32 11,25
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds	[degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00	Altitude maximale 2 42 8,57 180,00	Altitude moyenne 2 32 11,25 180,00
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds Espacement des satellites dans le plan	[degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00	Altitude maximale 2 42 8,57 180,00 17,14	Altitude moyenne 2 32 11,25 180,00 22,50
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds Espacement des satellites dans le plan Différence de phase entre les plans adjacents	[degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00 15,00	Altitude maximale 2 42 8,57 180,00 17,14 8,57	Altitude moyenne 2 32 11,25 180,00 22,50 11,25
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds Espacement des satellites dans le plan Différence de phase entre les plans adjacents Type d'orbite	[degrés] [degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00 15,00	Altitude maximale 2 42 8,57 180,00 17,14 8,57 circulaire	Altitude moyenne 2 32 11,25 180,00 22,50 11,25
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds Espacement des satellites dans le plan Différence de phase entre les plans adjacents Type d'orbite Inclinaison (i)	[degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00 15,00 200 24 15,00 180,00 30,00 15,00	Altitude maximale 2 42 8,57 180,00 17,14 8,57 circulaire	Altitude moyenne 2 32 11,25 180,00 22,50 11,25
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds Espacement des satellites dans le plan Différence de phase entre les plans adjacents Type d'orbite Inclinaison (i) Espacement des plans (F)	[degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00 15,00 LEO (72,00) 1	Altitude maximale 2 42 8,57 180,00 17,14 8,57 irculaire	Altitude moyenne 2 32 11,25 180,00 22,50 11,25
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds Espacement des satellites dans le plan Différence de phase entre les plans adjacents Type d'orbite Inclinaison (i) Espacement des plans (F)	[degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00 15,00 27,00 1 7	Altitude maximale 2 42 8,57 180,00 17,14 8,57 circulaire	Altitude moyenne 2 32 11,25 180,00 22,50 11,25
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds Espacement des satellites dans le plan Différence de phase entre les plans adjacents Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P)	[degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00 15,00 200 15,00 15,00 72,00 1 7 70	Altitude maximale 2 42 8,57 180,00 17,14 8,57 circulaire	Altitude moyenne 2 32 11,25 180,00 22,50 11,25
Difference de plase entre les plans adjacentsType d'orbiteInclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU)Espacement des nœudsEspacement des satellites dans le planDifférence de phase entre les plans adjacentsType d'orbiteInclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre de plans (P) Nombre total de satellites (T)	[degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00 15,00 LEO o 72,00 1 7 70 5,14	Altitude maximale 2 42 8,57 180,00 17,14 8,57 circulaire	Altitude moyenne 2 32 11,25 180,00 22,50 11,25
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds Espacement des satellites dans le plan Différence de phase entre les plans adjacents Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre de plans (P) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU)	[degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00 15,00 180,00 30,00 15,00 LEO c 72,00 1 7 70 5,14 51,43	Altitude maximale 2 42 8,57 180,00 17,14 8,57 circulaire	Altitude moyenne 2 32 11,25 180,00 22,50 11,25
Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds Espacement des satellites dans le plan Différence de phase entre les plans adjacents Type d'orbite Inclinaison (i) Espacement des plans (F) Nombre de plans (P) Nombre de plans (P) Nombre de plans (P) Nombre total de satellites (T) Unité modèle (Pattern Unit, PU) Espacement des nœuds	[degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés] [degrés]	MEO "Tun 63,40 1 Altitude minimale 2 24 15,00 180,00 30,00 15,00 100 100 24 15,00 180,00 30,00 15,00 LEO (72,00 1 7 70 5,14 51,43 36,00	Altitude maximale 2 42 8,57 180,00 17,14 8,57 circulaire	Altitude moyenne 2 32 11,25 180,00 22,50 11,25

Tableau III.9 : Détermination de la constellation « Walker Delta » pour différents types d'orbite

Les limitations de la méthode de constellation « Walker Delta » viennent du fait qu'elle ne permet pas d'obtenir une couverture au-dessus d'une certaine latitude (qui dépend de la valeur constante de l'inclinaison *i*), ce qui signifie que généralement la couverture polaire est négligée.

III.5.2 <u>Constellations d'orbites elliptiques</u>

Les constellations d'orbites elliptiques sont utilisées pour couvrir une zone spécifique (définie entre des emplacements spécifiques) à cause du changement de nombreux paramètres de conception de la constellation avec l'altitude du satellite le long de son orbite, tels que l'empreinte de la couverture (la plus grande empreinte de la couverture étant à l'apogée et la plus petite au périgée), la durée de visibilité du satellite et la vélocité du satellite.

Pour une constellation d'orbites elliptiques, afin de limiter le nombre de variables dans la conception de la constellation, et ainsi sa complexité, la constellation « Walker Star » et « Walker Delta » peuvent être utilisées. Cependant, ces deux méthodes ne peuvent pas fournir une constellation optimale pour une constellation d'orbites elliptiques pour une couverture (continue) de la Terre, car il y aurait de nombreux chevauchements des empreintes des satellites et, en outre, la couverture ne serait pas assurée au-dessus d'une certaine latitude (qui dépend de la valeur constante de l'inclinaison *i*). Mais une fois que les deux méthodes sont utilisées pour la couverture (continue) d'une zone spécifique qui est bien choisie, elles fourniraient une constellation d'orbites elliptiques bien plus optimale que celle d'orbites circulaires, parce que la couverture en orbites circulaires ne s'étend pas vers son apogée comme celle en orbites elliptiques.

III.6 Bilans de liaison

Les bilans de liaison seront établis dans cette section pour évaluer la marge système suivant les qualités de service (QoS : *Quality of Service*) requises en termes de taux d'erreur de bit, et en fonction de la valeur des paramètres clés du système comme la puissance émise, la *Puissance Isotrope Rayonnée Equivalente (PIRE)*, les pertes de propagation, etc., ce qui permet de vérifier si les liens de communication sont valides. Les bilans de liaison doivent prendre en compte l'atmosphère terrestre et les effets de l'environnement spatial sur les satellites. Les effets de propagation ont été calculés à partir d'hypothèses très simplificatrices. Mais en Annexe II, A.II.6, un rapide sommaire de l'environnement spatial est donné, et le lecteur est prié de s'y reporter.

III.6.1 <u>Outil Excel feuille de calcul de bilans de liaison</u>

Afin de calculer les bilans de liaison du système KAMPUCH-1, un outil Excel de feuille de calcul de bilans de liaison entièrement paramétrable a été développé. C'est un outil très puissant permettant de :

- configurer l'ensemble du système nanosatellitaire entre le satellite et la station au sol ;
- calculer les bilans de liaison sur les liens descendant et montant.

La feuille de calcul Excel est composée de treize onglets :

- 1. « *Title Page* » (page de titre)
- 2. « I.I.R.R » (Introduction, Instructions, Référence, Révisions);
- 3. « Orbit & Frequency » (propriétés de l'orbite et choix des fréquences);
- 4. « *Uplink Budget* » (bilan de liaison sur le lien montant);
- 5. « Downlink Budget » (bilan de liaison sur le lien descendant);
- 6. « System Performance Summary » (résumé des performances du système);
- 7. « Transmitters » (systèmes d'émission et pertes en lignes);
- 8. « Receivers » (systèmes de réception et pertes en lignes);

9. « Antenna Gains » (gains d'antenne);

- 10. « Antenna Pointing Losses » (pertes de dépointage des antennes);
- 11. « Antenna Polarization Loss » (pertes de dépolarisation des antennes);
- 12. « Atmos. & Ionos. Losses » (perte atmosphériques, pertes ionosphériques et pertes dues à la pluie);
- 13. « Modulation-Demodulation Method » (sélection des schémas de modulation et codage).

A titre d'exemple, un aperçu des deux onglets « *Orbit & Fréquence* » et « *Downlink Budget* » est montré sur la Figure III.4 et la Figure III.5 respectivement.

□ □ □ □ □ □ □ OUFTI-1 Link Budget	- Microsoft Excel
Home Insert Page Layout Formulas Data Review View Developer Acroba	at (G) = ^(D) X
S Cut Anal 10 A * ■ ■ Wnap Text General Parte Copy B I I □ • ▲ ■ ■ ■ ■ S Center S	al states and states
Clipboard G Font G Alignment G I	Vumber G Styles Cells Editing
N5 T	
OUFTI-1 Link Budget.xlsx	×
A B C D E F G	HIJKLM NOP
16 R.A.A.N. (Ω): 10.00 degrees	= elevation ande
17 Mean Anomaly (M): 0.00 degrees	r-h-Da
19 do/dt: -1.49 deg./day	I - IITRE
20 dΩ/dt: -2.07 deg./day	un and a second s
21 dM/dt: Not Implemented deg./day	De - 6378 136 km
22 Orbit Addude. 534.00 km	Re - 0510.150 Kill
24 Sun Synchronous Inclination: 98.93 degrees	
25 Elevation Angle (δ): 5.00 degrees	S = Re[{r^2/Re^2 - cos^2(δ)}^1/2 - sin δ]
26 To Center of	Earth
27 Slant Range (S): 1668.98 km.	
20 UPLINK & DOWNLINK Frequency Choices:	
30 Operator Selected Option: 1	
31	
32 Uplink:	
33 Option: Frequency: Wavelength (Å): Fr	ee space path Losses:
34 1 UHF 4.35.00 MHZ 0.689 meters 25 2 1/4000.00 MHz 0.021 meters 1	149.66 dB Uplink Frequency Choice: UHF 430.000 MHZ
36 3 Ka 30000 00 MHz 0.021 meters	175.05 UD
37 UHF 435.00 MHz 0.689 meters	149.68 dB
38	Path Loss = 22.0 + 20 log (S/ λ)
39 Downlink:	v
40 1 VHF 145.00 MHz 2.068 meters	140.14 dB Downlink Frequency Choice: VHF 145.000 MHz
41 2 Ku 12000.00 MHz 0.025 meters	1/8.50 dB
43 VHF 145.00 MHz 2.068 meters	140.14 dB
44	
45	· · · · · · · · · · · · · · · · · · ·
IN A DIA TITLE Page / L.I.R.R. Orbit & Frequency / Uplink Budget / Downlink Budget / System Peform	ance Summary / Transmitters / Receivers / Antenna Gain / Antenna Pointing Losses / All ())
Ready 🔚	

Figure III.4 : Onglet « Orbit & Fréquence » de l'outil Excel de calcul des bilans de liaison

B	UFTI-	1 Link Budget.xlsx			×
	1				
1.0	2	A	C D		
12					
	1	OUP IIII	NUTE:	UUF II-I Date Data Last Modified:	
	2	Downlink protocol:	AX.25	Version: 2.4.1 2011 June 03	=
	3	Orbit types:	LEO		
	4	Frequency band:	UHF/VHF		
	5	Minimum	altitude of satellite		L
	6	Parameter:	Value: Units:	Comments:	
	7	Satellite (SL):			
	8	SL Transmitter Power Output:	0.75 watts	This value is transferred from "Transmitters" W/S, Cell [E50]	NO [*]
	9	In dBW:	-1.25 dBW	Transmitter power expressed in dB above one watt	
	10	In dBm:	28.75 dBm	Transmitter power expressed in dB above one milliwatt	
	11	SL Total Transmission Line Losses:	1.02 dB	This value is transferred from "Transmitters" W/S, Cell [I68]	
	12	SL Antenna Gain:	2.15 dBi	This value is selected at "Antenna Gain" W/S, Cell [E41]	
	13	SLEIRP:	-0.12 dBW	Satellite Effective Isotropic Radiated Power (EIRP) [EIRP=Pt x Ltl x Ga]	
	14	Downlink Path:	7.00.17		
	15	SL Antenna Pointing Loss:	7.60 dB	This value is calculated in the "Antenna Pointing Losses" W/S, and trasterred from Cell [K85]	
	16	SL to GS Antenna Polarization Loss:	0.23 dB	This value is calculated in the "Polarization Loss" W/S and is transferred from Cell [F60].	
	1/	Free space path Losses:	140.14 dB	Lp = 22 + 20LOG(D/A); Iransferred from Orbit & Frequency W/S	
	10	Atmospheric Losses:	2.10 dB	This value is transferred from Atmos. & Ionos. Losses W/S, Cell [D23]	
	20	Dein Leases:	0.00 dB	This value is transiened from Atmos. & fores, Losses 1975, Cell [D47.050]	
	20	Ralli Lusses. Instranic Signal Lovel at Ground Station:	160 00 dBW	This value should be estimated by the link model operator and place into Cell [Dito] This is the signal level received at the Earth in the vacinity of the ground station using an empidirectional aptenna	
	22	Ground Station (GS):	-150.55 0.57	This is the signal level received at the Larth in the vacinity of the ground station using an ornindirectional antenna.	
г.	22	Eh/No Method			
	24	GS Antenna Pointing Loss:	0.15 dB	This value is transferred from "Antenna Pointing Losses" W/S. Cell (K102)	
1.	25	GS Antenna Gain:	13 35 dBi	This value is selected at "Antenna Gain" W/S. Cell (E58)	
·	26	GS Total Transmission Line Losses:	1.85 dB	This value is transferred from the "Receivers" W/S. Cell [J123]	
Ι.	27	GS Effective Noise Temperature	681,13 K	This value is calculated in the "Receivers" W/S and Transferred from Cell (J138)	-
H 4	► H	Title Page / I.I.R.R. / Orbit & Frequency /	Uplink Budget Downlink B	Budget / System Peformance Summary / Transmitters / Receivers / Antenna Gain / Antenna Pointing Losses / A	
Read	iy 📍				. +
		E. 117.0	1 + D !!		

Figure III.5 : Onglet « *Downlink Budget* » de l'outil Excel de calcul des bilans de liaison

III.6.2 <u>Structure des bilans de liaison</u>

La structure des bilans de liaison du nanosatellite KAMPUCH-1 est illustrée sur la **Erreur ! Source du renvoi** introuvable. ci-après.

Figure III.6 : Structure des bilans de liaison

III.6.3 Bilans de liaison du nanosatellite KAMPUCH-1

Dans cette section, nous allons observer l'impact des différents types d'orbite, des fréquences et des types de modulation avec ou sans codage, sur les bilans de liaison du système nanosatellitaire KAMPUCH-1, en nous focalisant sur la marge système et la puissance minimale admissible de l'émetteur en prenant une marge système désirée de 6 dB requis pour un système professionnel.

A. Bilans de liaison entre le nanosatellite KAMPUCH-1 et la station terrestre de Liège

Les caractéristiques du nanosatellite et de la station terrestre supposée située à Liège, en Belgique, qui ont été utilisées pour calculer les bilans de liaison sont fournies dans l'Annexe II, A.II.7, dans le Tableau A.II.9 et le Tableau A.II.10 respectivement. Rappelons que les principales caractéristiques du nanosatellite KAMPUCH-1 sont également résumées dans le Tableau III.1.

Les bilans de liaison entre un nanosatellite KAMPUCH-1 et la station sol de Liège représentés dans le Tableau III.10 ont été établis en utilisant l'outil Excel de calcul des bilans de liaison présenté précédemment.

D'après le Tableau III.10, nous pouvons observer que :

- Pour les liaisons montante et descendante, la marge système pour le protocole D-STAR est de 6,46 dB meilleure que celle du protocole AX.25 parce que le protocole D-STAR utilise la modulation GMSK, qui est plus performante que la modulation FSK non-cohérente et que le débit des données transmises est plus faible que celui du protocole AX.25.
- La marge système pour le canal de balise est de 18,06 dB et 11,42 dB plus élevée que celle du protocole AX.25 et D-STAR respectivement parce que la balise utilise un débit de données transmises beaucoup plus faible et la modulation FSK non-cohérente.

Type d'orbite	LEO (à l'altitude minimale du satellite)					
Bande de fréquence	UHF/VHF					
	Liaison n (UF	nontante IF)	Liaison descendante (VHF)			
Protocole		AX.25	D-STAR	AX.25	D-STAR	Balise
		Station t	errestre		Satellite	
Puissance transmise	[W]	20	20	0,75	0,75	0,10
	[dBW]	13,01	13,01	-1,25	-1,25	-10,00
Pertes totales des lignes de transmission	[dB]	3,09	3,09	1,02	1,02	1,02
Gain d'antenne	[dBi]	13,35	13,35	2,15	2,15	2,15
PIRE	[dBW]	23,27	23,27	-0,12	-0,12	-8,87
		Liaison r	nontante	Lia	ison descend	lante
Pertes de dépointage d'antenne	[dB]	0,15	0,15	7,60	7,60	7,60
Pertes de dépolarisation d'antenne	[dB]	0,23	0,23	0,23	0,23	0,23
Pertes en espace libre	[dB]	149,68	149,68	140,14	140,14	140,14
Pertes atmosphériques	[dB]	2,10	2,10	2,10	2,10	2,10
Pertes ionosphériques	[dB]	0,40	0,40	0,80	0,80	0,80
Pertes dues à la pluie	[dB]	0,00	0,00	0,00	0,00	0,00
Niveau du signal isotrope	[dBW]	-129,29	-129,29	-150,99	-150,99	-159,74
		Sate	llite	Station terrestre		
Pertes de dépointage d'antenne	[dB]	7,60	7,60	0,15	0,15	0,15
Gain d'antenne	[dBi]	2,15	2,15	13,35	13,35	13,35
Pertes totales des lignes de transmission	[dB]	0,83	0,83	1,85	1,85	1,85
Température de bruit efficace	[K]	219,66	219,66	681,13	681,13	681,13
Figure de mérite (G/T)	[dB/K]	-22,10	-22,10	-16,83	-16,83	-16,83
Densité de puissance du rapport signal sur bruit (S/N ₀)	[dBHz]	69,60	69,60	60,62	60,62	51,87
Débit des données	[bps]	9600,00	4800,00	9600,00	4800,00	20,00
	[dBHz]	39,82	36,81	39,82	36,81	13,01
E _b /N ₀ du système	[dB]	29,78	32,79	20,80	23,81	38,86
Méthode de démodulation		FSK non- cohérente	GMSK	FSK non- cohérente	GMSK	FSK non- cohérente
Codage		Aucun	Aucun	Aucun	Aucun	Aucun
TEB spécifié		10 ⁻⁵	10-5	10 ⁻⁵	10 ⁻⁵	10 ⁻⁵
Perte de mise en œuvre du démodulateur		1,00	1,00	1,00	1,00	1,00
E _b /N ₀ requis du système	[dB]	13,35	9,72	13,35	9,72	13,35
E _b /N ₀ seuil	[dB]	14,35	10,72	14,35	10,72	14,35
Marge système	[dB]	15,43	22,07	6,45	13,09	24,51
Marge système désiré	[dB]	6,00	6,00	6,00	6,00	6,00
Marge système disponible	[dB]	9,43	16,07	0,45	7,09	18,51
Puissance minimale admissible de	[dB]	3,58	-3,06	-1,70	-8,34	-28,51

l'émetteur						
	[W]	2,28	0,49	0,68	0,15	0,0014

Tableau III.10 : Bilans de liaison entre le nanosatellite KAMPUCH-1 et la station terrestre de Liège

B. Impact des types d'orbite sur les bilans de liaison

Cette section a pour but d'examiner l'impact du changement du type d'orbite sur les bilans de liaison entre le nanosatellite KAMPUCH-1 et la station terrestre de Liège, et de déterminer les types d'orbite qui peuvent fournir une liaison de communication valide en supposant que les bandes de fréquence UHF/VHF sont utilisées. Changer le type d'orbite (LEO \rightarrow MEO, VLEO) entraînera un changement des pertes en espace libre, comme indiqué dans le Tableau III.11.

Bande de fréquence	UHF/VHF				
	Liaison descendante (VHF)	Liaison montante (UHF)			
Fréquence	145 MHz	435 MHz			
Tuna d'aubita	Pertes en espace libre [dB]				
i ype u orbite	Liaison descendante	Liaison montante			
LEO	140,14	149,68			
VLEO	140,36	149,90			
MEO (Molniya)	146,97	156,51			
MEO (Tundra)	165,35	174,89			

Tableau III.11 : Pertes en espace libre pour différents types d'orbite

Les bilans de liaison entre le nanosatellite KAMPUCH-1 et la station terrestre de Liège pour les différents types d'orbite avec les protocoles de la balise, AX.25 et D-STAR sont présentés dans les tableaux A.II.11, A.II.12 et A.II.13 respectivement de l'Annexe II. Les remarques que nous pouvons faire à partir de ces tableaux sont les suivantes :

- Les pertes en espace libre des liaisons montante et descendante pour une orbite LEO sont meilleures de respectivement 0,22 dB, 6,84 dB et 25,21 dB que celles des orbites VLEO, MEO « Molniya» et MEO « Tundra »,
- Pour les bilans de liaison descendante avec le protocole de la balise, avec une marge système désiré de 6 dB, le lien de communication n'est valide que pour les orbites LEO, VLEO et MEO « Molniya » et la puissance minimale admissible de l'émetteur (du satellite) est de 0,0014 W, 0,0015 W et 0,0068 W respectivement, ce qui montre que la qualité de la liaison est excellente même pour de très faibles puissances d'émission.
- Pour les bilans de liaison descendante avec le protocole AX.25, avec une marge système désiré de 6 dB, le lien de communication n'est valide que pour l'orbite LEO et VLEO avec une puissance minimale admissible de l'émetteur (du satellite) de 0,68 W et 0,71 W respectivement. Pour les bilans de liaison montante avec le protocole AX.25, avec une marge système désiré de 6 dB, le lien de la communication n'est valide que pour l'orbite LEO, VLEO et MEO « Molniya » avec la puissance minimale admissible de l'émetteur (de la station sol) de 2,28 W, 2,40 W et 11,01 W respectivement.
- Pour les bilans de liaison descendante avec le protocole D-STAR, avec une marge système désiré de 6 dB, le lien de communication est valide pour les orbites LEO, VLEO et MEO « Molniya » avec une puissance minimale admissible de l'émetteur (du satellite) de 0,1465 W, 0,1540 W et 0,7066 W respectivement. Pour les bilans de liaison montante avec le protocole D-STAR, le lien de communication n'est valide également que pour les orbites LEO, VLEO et MEO « Molniya » avec une puissance admissible minimale de l'émetteur (de la station sol) de 0,49 W, 0,52 W et 2,38 W respectivement.
- Donc, avec la condition d'une marge système de 6 dB, il y a deux types d'orbite, LEO et VLEO, qui peuvent être utilisés pour établir les liens de communication pour tous les trois types de protocole utilisés. Cependant, les bilans de liaison pour l'orbite LEO sont meilleurs que ceux pour l'orbite VLEO en termes de marge système et de puissance de transmission requise. Par conséquent, l'orbite LEO est le meilleur choix pour notre système sous ce rapport.

C. Impact des fréquences sur les bilans de liaison

Cette section étudiera l'impact du changement des bandes de fréquence sur les bilans de liaison entre le nanosatellite KAMPUCH-1 et la station terrestre de Liège avec l'orbite LEO, le satellite étant placé au périgée, et avec seulement le protocole AX.25. Les raisons pour lesquelles nous n'envisageons que le protocole AX.25 est que ce cas constitue celui où la valeur de la marge système est la plus faible parmi tous les types de protocole utilisés. Ainsi, si les bilans de liaison sont valides pour le protocole AX.25, ils le seront pour les autres protocoles.

Le changement des bandes de fréquence UHF/VHF vers les bandes Ka ou Ku donnera lieu à un changement des pertes totales des lignes de transmission (car le type de câble a changé), des types d'antenne et des pertes en espace libre. Les pertes en espace libre pour les différentes bandes de fréquence sont données dans le Tableau III.12. Les pertes en ligne, les gains d'antenne et les autres pertes sont calculées dans les feuilles de calcul Excel.

Remarque : le satellite est placé au périgée de l'orbite LEO							
Bande de fréqu	ence	UHF/VHF		Ku		Ka	
		Liaison descendante	Liaison montante	Liaison descendante	Liaison montante	Liaison descendante	Liaison montante
Fréquence [MHz]		VHF 145 MHz	UHF 435 MHz	12 GHz	14 GHz	20 GHz	30 GHz
Pertes en espace libre	[dB]	140,14	149,68	178,50	179,83	182,93	186,45
Pertes atmosphériques	[dB]	2,10	2,10	0,71	0,86	3,38	2,77
Pertes ionosphériques	[dB]	0,80	0,40	0,00	0,00	0,00	0,00
Pertes dues à la pluie	[dB]	0,00	0,00	11,57	16,05	32,09	62,79

Tableau III.12 : Pertes en espace libre pour différentes bandes de fréquence

Le bilan de liaison entre le nanosatellite KAMPUCH-1 et la station terrestre de Liège avec le protocole AX.25 pour les bandes de fréquence UHF/VHF, Ku et Ka est donné dans le Tableau III.13.

Type d'orbite	LEO (à l'altitude minimale du satellite)				
Protocole	AX.25				
L	IAISON MO	ONTANTE			
Bande de fréquence		UHF/VHF	Ku	Ka	
		Station terres	tre		
Puissance transmise	[W]	20	20	20	
	[dBW]	13,01	13,01	13,01	
Pertes totales des lignes de transmission	[dB]	3,09	9,40	14,85	
Gain d'antenne	[dBi]	13,35	54,20	60,82	
PIRE	[dBW]	23,27	57,81	58,98	
		Liaison montante			
Pertes de dépointage d'antenne	[dB]	0,15	1,03	5,27	
Pertes de dépolarisation d'antenne	[dB]	0,23	0,23	0,23	
Pertes en espace libre	[dB]	149,68	179,83	186,45	
Pertes atmosphériques	[dB]	2,10	0,86	2,77	
Pertes ionosphériques	[dB]	0,40	0,00	0,00	
Pertes dues à la pluie	[dB]	0,00	16,17	63,26	
Niveau du signal isotrope	[dBW]	-129,29	-140,32	-198,99	
		Satellite			

Pertes de dépointage d'antenne	[dB]	7,60	0,00	0,00		
Gain d'antenne	[dBi]	2,15	5,27	5,27		
Pertes totales des lignes de transmission	[dB]	0,83	1,70	2,40		
Température de bruit efficace	[K]	219,66	245,16	262,12		
Figure de mérite (G/T)	[dB/K]	-22,10	-20,33	-21,31		
Densité de puissance du rapport signal sur bruit (S/N ₀)	[dBHz]	69,60	67,95	8,29		
Débit des données désiré	[bps]	9600,00	9600,00	9600,00		
	[dBHz]	39,82	39,82	39,82		
E _b /N ₀ du système	[dB]	29,78	28,13	-31,53		
Modulation		FSK non- cohérente	FSK non- cohérente	FSK non- cohérente		
Codage		Aucun	Aucun	Aucun		
TEB spécifié		10 ⁻⁵	10 ⁻⁵	10 ⁻⁵		
Pertes de mise en œuvre du démodulateur		1,00	1,00	1,00		
E _b /N ₀ requis du système	[dB]	13,35	13,35	13,35		
E _b /N ₀ seuil	[dB]	14,35	14,35	14,35		
Marge système	[dB]	15,43	13,78	-45,88		
Marge système désiré	[dB]	6,00	6,00	6,00		
Marge système disponible	[dB]	9,43	7,78	-51,88		
Puissance minimale admissible de l'émetteur	[dB]	3,58	5,23	64,89		
	[W]	2,28	3,34	3085215,08		
LIAISON DESCENDANTE						
LIAI	SON DESC	CENDANTE				
LIAI Bande de fréquence	SON DESC	CENDANTE UHF/VHF	Ku	Ka		
LIAI Bande de fréquence	SON DESC	CENDANTE UHF/VHF Station terrestr	Ku e	Ka		
LIAI Bande de fréquence Puissance transmise	ISON DESC	CENDANTE UHF/VHF Station terrestr 0,75	Ku e 0,75	Ka 0,75		
LIAI Bande de fréquence Puissance transmise	[W] [dBW]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25	Ku e 0,75 -1,25	Ka 0,75 -1,25		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission	[W] [dBW] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02	Ku e 0,75 -1,25 1,81	Ka 0,75 -1,25 2,17		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne	[W] [dBW] [dB] [dBi]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15	Ku e 0,75 -1,25 1,81 5,59	Ka 0,75 -1,25 2,17 6,90		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE	[W] [dBW] [dB] [dBi] [dBW]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12	Ku e 0,75 -1,25 1,81 5,59 2,53	Ka 0,75 -1,25 2,17 6,90 3,48		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE	[W] [dBW] [dB] [dBi] [dBW]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descended	Ku e 0,75 -1,25 1,81 5,59 2,53 lante	Ka 0,75 -1,25 2,17 6,90 3,48		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE Pertes de dépointage d'antenne	[W] [dBW] [dB] [dBi] [dBW] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60	Ku e 0,75 -1,25 1,81 5,59 2,53 lante 0,00	Ka 0,75 -1,25 2,17 6,90 3,48 0,00		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE Pertes de dépointage d'antenne Pertes de dépolarisation d'antenne	[W] [dBW] [dB] [dBi] [dBi] [dBW] [dB] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23	Ku e 0,75 -1,25 1,81 5,59 2,53 lante 0,00 0,23	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE Pertes de dépointage d'antenne Pertes de dépolarisation d'antenne Pertes en espace libre	[W] [dBW] [dB] [dBi] [dBW] [dB] [dB] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14	Ku e 0,75 -1,25 1,81 5,59 2,53 lante 0,00 0,23 178,50	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE Pertes de dépointage d'antenne Pertes de dépolarisation d'antenne Pertes en espace libre Pertes atmosphériques	[W] [dBW] [dB] [dBi] [dBi] [dB] [dB] [dB] [dB] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14 2,10	Ku e 0,75 -1,25 1,81 5,59 2,53 ante 0,00 0,23 178,50 0,71	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93 3,38		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE Pertes de dépointage d'antenne Pertes de dépolarisation d'antenne Pertes en espace libre Pertes atmosphériques Pertes ionosphériques	[W] [dBW] [dB] [dBi] [dBi] [dBW] [dB] [dB] [dB] [dB] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14 2,10 0,80	Ku e 0,75 -1,25 1,81 5,59 2,53 ante 0,00 0,23 178,50 0,71 0,00	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93 3,38 0,00		
LIAI Bande de fréquence Puissance transmise Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE PIRE Pertes de dépointage d'antenne Pertes de dépolarisation d'antenne Pertes en espace libre Pertes atmosphériques Pertes ionosphériques Pertes dues à la pluie	[W] [dBW] [dBW] [dBi] [dBi] [dBW] [dB] [dB] [dB] [dB] [dB] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14 2,10 0,80 0,00	Ku e 0,75 -1,25 1,81 5,59 2,53 ante 0,00 0,23 178,50 0,71 0,00 11,66	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93 3,38 0,00 32,33		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE Pertes de dépointage d'antenne Pertes de dépolarisation d'antenne Pertes en espace libre Pertes atmosphériques Pertes ionosphériques Pertes dues à la pluie Niveau du signal isotrope	ESON DESC [W] [dBW] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14 2,10 0,80 0,00 -150,99	Ku e 0,75 -1,25 1,81 5,59 2,53 ante 0,00 0,23 178,50 0,71 0,00 11,66 -188,56	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93 3,38 0,00 32,33 -215,40		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE PIRE Pertes de dépointage d'antenne Pertes de dépolarisation d'antenne Pertes en espace libre Pertes atmosphériques Pertes ionosphériques Pertes dues à la pluie Niveau du signal isotrope	[W] [dBW] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14 2,10 0,80 0,00 -150,99 Satellite	Ku e 0,75 -1,25 1,81 5,59 2,53 lante 0,00 0,23 178,50 0,71 0,00 11,66 -188,56	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93 3,38 0,00 32,33 -215,40		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE PIRE Pertes de dépointage d'antenne Pertes de dépolarisation d'antenne Pertes en espace libre Pertes atmosphériques Pertes ionosphériques Pertes dues à la pluie Niveau du signal isotrope Pertes de dépointage d'antenne	Image: son desc [W] [dBW] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14 2,10 0,80 0,00 -150,99 Satellite 0,15	Ku e 0,75 -1,25 1,81 5,59 2,53 lante 0,00 0,23 178,50 0,71 0,00 11,66 -188,56 0,76	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93 3,38 0,00 32,33 -215,40		
LIAI Bande de fréquence Puissance transmise Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE PIRE Pertes de dépointage d'antenne Pertes en espace libre Pertes atmosphériques Pertes ionosphériques Pertes dues à la pluie Niveau du signal isotrope Pertes de dépointage d'antenne Gain d'antenne	Image: Son DESC [W] [dBW] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14 2,10 0,80 0,00 -150,99 Satellite 0,15 13,35	Ku e 0,75 -1,25 1,81 5,59 2,53 lante 0,00 0,23 178,50 0,71 0,00 11,66 -188,56 0,76 52,87	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93 3,38 0,00 32,33 -215,40		
LIAI Bande de fréquence Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE PIRE Pertes de dépointage d'antenne Pertes en espace libre Pertes atmosphériques Pertes ionosphériques Pertes dues à la pluie Niveau du signal isotrope Pertes de dépointage d'antenne	Image: son desc [W] [dBW] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14 2,10 0,80 0,00 -150,99 Satellite 0,15 13,35 1,85	Ku e 0,75 -1,25 1,81 5,59 2,53 lante 0,00 0,23 178,50 0,71 0,00 11,66 -188,56 0,76 52,87 5,38	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93 3,38 0,00 32,33 -215,40 2,17 57,30 7,00		
LIAI Bande de fréquence Puissance transmise Puissance transmise Pertes totales des lignes de transmission Gain d'antenne PIRE Pertes de dépointage d'antenne Pertes en espace libre Pertes atmosphériques Pertes ionosphériques Pertes dues à la pluie Niveau du signal isotrope Pertes de dépointage d'antenne Gain d'antenne Pertes totales des lignes de transmission Température de bruit efficace	Image: Son DESC [W] [dBW] [dB] [dB]	CENDANTE UHF/VHF Station terrestr 0,75 -1,25 1,02 2,15 -0,12 Liaison descend 7,60 0,23 140,14 2,10 0,80 0,00 -150,99 Satellite 0,15 13,35 1,85 681,13	Ku e 0,75 -1,25 1,81 5,59 2,53 lante 0,00 0,23 178,50 0,71 0,00 11,66 -188,56 0,76 52,87 5,38 434,15	Ka 0,75 -1,25 2,17 6,90 3,48 0,00 0,23 182,93 3,38 0,00 32,33 -215,40 2,17 57,30 7,00 450,93		

Densité de puissance du rapport signal sur bruit (S/N ₀)	[dBHz]	60,62	60,39	34,79
Débit des données désiré	[bps]	9600,00	9600,00	9600,00
	[dBHz]	39,82	39,82	39,82
E _b /N ₀ du système	[dB]	20,80	20,57	-5,03
Modulation		FSK non- cohérent	FSK non- cohérent	FSK non- cohérent
Codage		Aucun	Aucun	Aucun
TEB spécifié		10 ⁻⁵	10 ⁻⁵	10 ⁻⁵
Pertes de mise en œuvre du démodulateur		1,00	1,00	1,00
E _b /N ₀ requis du système	[dB]	13,35	13,35	13,35
E _b /N ₀ seuil	[dB]	14,35	14,35	14,35
Marge système	[dB]	6,45	6,22	-19,38
Marge système désiré	[dB]	6,00	6,00	6,00
Marge système disponible	[dB]	0,45	0,22	-25,38
Puissance minimale admissible de l'émetteur	[dB]	-1,70	-1,47	24,13
	[W]	0,6764	0,7131	258,8751

Tableau III.13 : Impact des fréquences sur les bilans de liaison avec le protocole AX.25

Nous pouvons observer que :

- Pour la liaison descendante, le lien de la communication n'est valide que dans les bandes de fréquence UHF/VHF et Ku avec une puissance minimale admissible de l'émetteur (du satellite) de 0,6764 W et 0,7131 W respectivement.
- Pour la liaison montante, seules les bandes de fréquence UHF/VHF et Ku permettent d'établir une communication, avec une puissance minimale admissible de l'émetteur (de la station sol) de 2,28 W et 3,34 W respectivement.

D. Impact des types de modulation avec ou sans codage sur le bilan de liaison

Cette section examine l'impact du changement du schéma de modulation et codage sur les bilans de liaison entre le nanosatellite KAMPUCH-1 et la station terrestre de Liège, avec le protocole AX.25.

Les modulations comparées pour un TEB de 10^{-5} sont : FSK non-cohérente non codée, FSK cohérente non codée, GMSK non codée, BPSK non codée et BPSK avec un codage convolutionnel. Les performances en E_b/N_0 de ces schémas de modulation et codage ont été données dans le Tableau III.2 plus haut.

Le Tableau III.14 met en comparaison les valeurs de la marge système et de la puissance minimale admissible de l'émetteur pour les liaisons montantes et descendante pour les différents schémas de modulation et codage identifiés.

En liaison montante, la modulation BPSK associée à un codage convolutionnel permet d'obtenir une marge système très confortable de **22,87 dB**, et de réduire la puissance de l'émetteur jusqu'à **0,41 W**.

Les calculs théoriques effectués dans ce chapitre seront complétées dans le prochain chapitre par la mise en œuvre d'une série de simulations sous l'environnement logiciel STK.

Bande de fréquence		UHF/VHF				
Type d'orbite		LEO (à l'altituc	le minimale	du satellit	e)	
Protocole		AX.25				
			Liaison	montante	(UHF)	
Type de modulation		FSK non-cohérente	FSK cohérente	GMSK	BPSK	BPSK
Codage		Aucun	Aucun	Aucun	Aucun	Convolutionnel (R=1/2, K=7)
E _b /N ₀ du système	[dB]			29,78		
E _b /N ₀ seuil	[dB]	14,35	13,60	10,72	10,59	6,91
Marge système	[dB]	15,43	16,18	19,06	19,19	22,87
Marge système désiré	[dB]	6,00	6,00	6,00	6,00	6,00
Marge système disponible	[dB]	9,43	10,18	13,06	13,19	16,87
Puissance minimale admissible de l'émetteur	[dB]	3,58	2,83	-0,05	-0,18	-3,86
	[W]	2,28	1,92	0,99	0,96	0,41
			Liaison d	lescendant	te (VHF)	
Modulation		FSK non-cohérente	FSK cohérente	GMSK	BPSK	BPSK
Codage		Aucun	Aucun	Aucun	Aucun	Convolutionnel (R=1/2, K=7)
E _b /N ₀ du système	[dB]	20,80				
E _b /N ₀ seuil	[dB]	14,35	13,60	10,72	10,59	6,91
Marge système	[dB]	6,45	7,20	10,08	10,21	13,89
Marge système désiré	[dB]	6,00	6,00	6,00	6,00	6,00
Marge système disponible	[dB]	0,45	1,20	4,08	4,21	7,89
Puissance minimale admissible de l'émetteur	[dB]	-1,70	-2,45	-5,33	-5,46	-9,14
	[W]	0,68	0,5685	0,2931	0,2843	0,1219

Tableau III.14 : Performances de différents schémas de modulation et codage pour le protocole AX.25

CHAPITRE IV

Partie réalisation et simulation : réalisation d'un simulateur d'analyse orbitographique et d'analyse des performances de communication

Les études bibliographique et théorique menées dans les parties précédentes sont complétées dans cette partie par la mise en œuvre de simulations, sous l'environnement logiciel STK, de mécanique orbitale, de constellations de satellites et de bilans de liaison. Cette partie sera divisée en cinq parties :

- 1. Présentation de STK
- 2. Mécanique orbitale pour différents types d'orbite
- 3. Constellations en couverture continue de la Terre pour différents types d'orbite
- 4. Constellations pour un système satellitaire optimisé et rentable en basse orbite terrestre entre deux endroits précis
- 5. Bilans de liaison entre un nanosatellite en basse orbite terrestre et une station terrestre située à Liège.

IV.1 Présentation de STK

Le logiciel STK (Satellite Tool Kit), actuellement dans sa version 9.2.2, est un programme complet de simulation spatiale développé par la société Analytical Graphics, Inc. (AGI). STK a une large gamme de fonctionnalités, et pour cette raison, est largement utilisé dans la communauté spatiale, en particulier pour des applications de télédétection. STK est utilisé dans tous les domaines, dans toutes les branches d'activité de recherche et de développement, depuis les programmes de recherche universitaire, jusqu'aux opérations de développement militaire.

STK est pourvu de bases de données bien fournies de villes, ainsi que de satellites actifs (ou autrefois actifs). Cependant, les utilisateurs ne sont pas limités à ce qui existe, il est également possible de créer de nouveaux satellites ou modèles d'objet basés sur le cahier des charges d'un projet spécifique. Cette flexibilité rend ce programme extrêmement polyvalent.

En outre, STK n'est pas limité aux systèmes satellitaires. Des stations terrestres et des véhicules peuvent être ajoutés aux scénarii de simulation; des avions, des missiles et des navires peuvent également être insérés dans les scénarii. Tous ces objets peuvent être équipés des capteurs, de systèmes radar, d'émetteurs, de récepteurs ou d'antennes, soit possédant des propriétés génériques, soit caractérisés par des modèles définis par l'utilisateur luimême.

L'interface utilisateur de STK est particulièrement utile et intuitive. Ce logiciel fournit une vue en trois dimensions (3D) de la Terre et des satellites en orbite, ainsi qu'une représentation en deux dimensions (2D). Chaque détail de ces projections peuvent être modifié selon les préférences de l'utilisateur - les images peuvent être réalisées sous forme de simples illustrations en noir et blanc, ou peuvent être associées à des modèles de terrain réalistes.

STK excelle dans ses capacités de traitement et de modélisation des systèmes multi-objets. Il est possible de créer des groupes d'objets dans les constellations, ou de les organiser dans des liens. Cette fonctionnalité a été critique pour les simulations réalisées au cours de ce stage. Les fonctionnalités de STK offrent les outils nécessaires pour déterminer et ajuster la qualité d'un lien de communication, car elles fournissent des données dynamiques sur la qualité du signal, telles que le rapport signal sur bruit (*Signal to Noise Ratio, SNR*), le gain, la durée et le lieu de contact.

La gamme de produits STK a été réorganisée en trois éditions avec des modules STK supplémentaires :

- L'édition de base de STK (*STK Basic Edition*) est une application gratuite qui offre les fonctionnalités fondamentales de l'édition professionnelle de STK.
- L'édition professionnelle de STK (STK Professional Edition) est une application orientée ingénierie à usage général qui tire sa puissance du moteur de mécanique spatiale breveté par AGI muni de capacités de visualisation intégrées. STK Professionnel a une interface utilisateur intuitive, des dizaines de milliers des paramètres de sortie des données et une structure modulaire permettant d'étendre l'application avec des fonctionnalités de modélisation et d'analyse spécialisées.

- L'édition avancée de STK (STK Expert Edition) est une suite logicielle qui combine l'édition professionnelle de STK avec tous les modules d'analyse avancée de STK (STK / Analyzer, STK / Attitude, STK / Communications, STK / Couverture, STK / Radar, STK / Intégration et STK / Terrain, Imagerie et Cartes) à un coût réduit.
- Les **modules complémentaires de STK** sont des modules qui peuvent être ajoutés aux éditions de base, professionnelle ou avancée de STK.

Products Che	Int	Supplemental STK Modules	AND STREAM BRAND
STKEVD	ent	Modeling 🛛 🛛 🖾	
JUIKEAP		Platforms	
Products below included w	vith STK Expert	Aircraft Mission Modeler	- <u>-</u>
		Astrogator	
Standard Modules		Attitude SOUS	
	OTIC	0020	-
Analyzer o-	STK	Payloads	
	Professiona	SATSOFT	
Integration o-		• EOIR	
Attitude O-		• nadar	
	STK	Environment	
Communications O-		TIREM	
0	Dasic	Urban Propagation	
Coverage 0-		• GIS Analyst	
Radar O-		• RAE	
		• Weather Sentinei	
TIM 0-		Analysis	
		• Analyzer 📃 🔤	
		Coverage	
		• CAI	
		Scheduler	
		Additional Broducts	
		Integration	
		• RT3	
		• DSim	

Un aperçu des éditions et des modules de STK est montré sur la Figure IV.1.

AGI offre une version enseignement à usage purement éducatif avec une licence gratuite limitée dans le temps pour certains modules STK, pour les établissements universitaires justifiant d'un programme de recherche universitaire. Le programme de simulation STK qui a été utilisé au cours de ce stage est une version enseignement accordée à TESA, et les modules actifs sont montrés sur la Figure IV.2.

Product	Description	Version	Status
AMM	Aircraft Mission Modeler Expires in: 46 days	9.0	LockDemo(30-aug-2011)
ASTG	Astrogator Expires in: 46 days	9.0	LockDemo(30-aug-2011)
ATT	Attitude Expires in: 46 days	9.0	LockDemo(30-aug-2011)
CAT	Conjunction Analysis Tool Expires in: 46 days	9.0	LockDemo(30-aug-2011)
COV	Coverage Expires in: 46 days	9.0	LockDemo(30-aug-2011)
Comm	Communications Expires in: 46 days	9.0	LockDemo(30-aug-2011)
Radar	Radar Expires in: 46 days	9.0	LockDemo(30-aug-2011)
SEET	Space Environment and Effects Tool Expires in: 46 days	9.0	LockDemo(30-aug-2011)
STK	STK Basic Edition	9.0	Nodelock(NIC)
STKIntegration	STK Integration Module Expires in: 46 days	9.0	LockDemo(30-aug-2011)
STKProfessional	STK Professional Edition Expires in: 46 days	9.0	LockDemo(30-aug-2011)
DIS	Distributed Interactive Simulation	9.0	No License found
EOIR	Electro-Optical Infrared Sensor Performance	9.0	No License found
MicrosoftVE	Microsoft Bing Maps	9.0	No License found
RT3Client	RT3 Client	9.0	No License found
RdrAdvEn	Radar Advanced Environment - Subject to ITAR	9.0	No License found
SOLIS	Spacecraft Object Library In STK	9.0	No License found
STKCAP	Civil Air Patrol Bundle		No License found
STKEDU	Educational Bundle		No License found
STKExpert	STK Expert Edition	9.0	No License found
STKTIM	Terrain, Imagery & Maps	9.0	No License found
TIREM	TIREM		No License found

IV.2 Mécaniques orbitales pour différents types d'orbite

IV.2.1 <u>Remarques préliminaires</u>

- Tous les scénarii de simulation STK, sauf indication explicite, ont été exécutés sur la même période d'analyse de 24 heures, commençant le 7 juillet 2011 à 10:00:00 UTCG (ou 7 juillet 2011 12:00:00 LCLG), et se terminant le 8 juillet 2011 10:00:00 UTCG (ou 8 juillet 2011 12:00:00 LCLG).
- Les différents types d'orbite utilisés pour tous les scénarii de simulation STK, sauf indication contraire, sont les suivants :
 - o orbites elliptiques : LEO, VLEO, MEO (Molniya) et MEO (Tundra) [toutes sont inclinées] ;
 - o orbites circulaires : LEO (inclinée), LEO (polaires).

Les caractéristiques des différents types d'orbite pour les scénarii de simulation STK sont présentées dans le Tableau IV.1 ci-dessous.

	Types d'arbite		Circulaire			
Paramètres orbitaux	Types a orbite	LEO	VLEO	MEO	MEO	LEO
Turumetres of bituux				"Molniya"	"Tundra"	
Altitude de l'apogée (h_a)	[km]	1447,00	370,00	39105,00	46340,00	650,00
Altitude du périgée (h_p)	[km]	354,00	368,00	1250,00	25231,00	650,00
Inclinaison (<i>i</i>)	[degrés]	71,00°	40,02°	63,4°	63,4°	72°
R.A.A.N (Ω)	[degrés]	45,00	45,00	45,00	45,00	45,00
Argument du périgée (ω)	[degrés]	30,00	30,00	30,00	30,00	0,00
Anomalie vraie (v)	[degrés]	15,00	15,00	15,00	15,00	45,00

Tableau IV.1 : Caractéristiques des différents types d'orbite utilisés dans les scénarii de simulation STK

- Il n'y a pas de contraintes imposées sur les plans orbitaux pour tous les scénarii de simulation STK, sauf indication contraire, et les satellites sont supposés être capables de contrôler leur attitude ainsi que munis de liens de communication inter-satellites.
- Pour toutes les constellations dans les scénarii de simulation STK, l'espacement relatif F entre les satellites dans les plans adjacents est égal à 1.

IV.2.2 Objectif des simulations de mécanique orbitale

Une station terrestre et une nanosatellite suivant différents types d'orbite sont créés dans STK. Les capacités de calcul de STK sont exploitées afin de déterminer les éléments orbitaux classiques : les temps d'accès, la distance oblique et les autres paramètres orbitaux pour chaque type d'orbite. Toutes les fois que cela sera possible ou applicable, une comparaison avec les résultats du chapitre III sera faite.

IV.2.3 <u>Résultats de simulation</u>

Les graphiques 3D et 2D des scénarii de simulation pour l'orbite LEO sont présentés sur la Figure IV.3. Pour les autres orbites, se reporter à l'Annexe III, A.III.2. Les valeurs de la période orbitale des différents types d'orbite calculées par STK et montrées dans le Tableau IV.2 sont les mêmes que celles calculées au chapitre III, dans la section III.4.2, l'Annexe II, A.II.4 A.

Type d'orbite	Période orbitale [minutes]
LEO elliptique	103
VLEO elliptique	91,93
MEO « Molniya » elliptique	717,79
MEO « Tundra » elliptique	1436,04
LEO « inclinée » circulaire	97,73
LEO « polaire » circulaire	97,73

Tableau IV.2 : Périodes orbitales des différents types d'orbite

A. <u>Éléments orbitaux classiques</u>

Les éléments orbitaux classiques obtenus par les simulations STK pour les différents types d'orbite considérés sont présentés dans les tableau IV.3, Tableau IV.4, Tableau IV.5, Tableau IV.6, Tableau IV.7 et Tableau IV.8.

Temps (UTCG)	Demi- grand axe [km]	Excentricité	Inclinaison [deg]	RAAN [deg]	Arg. du Périgée [deg]	Anomalie vraie [deg]	Anomalie moyenne [deg]
7/7/11 10:00 AM	7278,637	0,075083	71	45	30	15	12,889
7/8/11 10:00 AM	7278,637	0,075083	71	42,934	28,509	4,392	3,768
Variation de	R.A.A.N ($d\Omega$) [degrés/jour]	-2,066				
Variation de	ω (d ω) [degree	és/jour]	-1,491				

Tableau IV.3 : Éléments orbitaux classiques de l'orbite LEO elliptique

Le Tableau IV.2 montre que, pour l'orbite LEO elliptique, la variation de ω ($d\omega$) est d'environ -1,49° par jour, la variation de R.A.A.N ($d\Omega$) est d'environ -2,07° par jour, et que l'anomalie moyenne à l'instant de début est d'environ 12,89° : on retrouve les mêmes résultats que ceux calculés au chapitre III, dans la section III.4.2, l'Annexe II, A.II.4 A.

Temps (UTCG)	Demi- grand axe [km]	Excentricité	Inclinaison [deg]	RAAN [deg]	Arg. du Périgée [deg]	Anomalie vraie [deg]	Anomalie moyenne [deg]
7/7/11 10:00 AM	6747,137	0,000148	40,02	45	30	15	14,996
7/8/11 10:00 AM	6747,137	0,000148	40,02	38,729	37,911	257,397	257,413
Variation de	-6,271						
Variation de	7,911						

Tableau IV.4 : Éléments orbitaux classiques de l'orbite VLEO elliptique

Pour l'orbite VLEO elliptique, la variation de ω ($d\omega$) est d'environ 7,91° par jour, la variation de R.A.A.N ($d\Omega$) est d'environ -6,27° par jour, et l'anomalie à l'instant de début est d'environ 15°. Les résultats du chapitre III, dans la section III.4.2, l'Annexe II, A.II.4 A, sont confirmés.

Temps (UTCG)	Demi- grand axe [km]	Excentricité	Inclinaison [deg]	RAAN [deg]	Arg. du Périgée [deg]	Anomalie vraie [deg]	Anomalie moyenne [deg]
7/7/11 10:00 AM	26555,637	0,712749	63,4	45	30	15	1,781
7/8/11 10:00 AM	26555,637	0,712749	63,4	44,875	30	32,216	3,964
Variation de	-0,125						
Variation de	0,000						

Tableau IV.5 : Éléments orbitaux classiques de l'orbite MEO « Molniya » elliptique

Pour l'orbite MEO « Molniya » elliptique, la variation de ω ($d\omega$) est sensiblement nulle, la variation de R.A.A.N ($d\Omega$) est d'environ -0,13° par jour, et l'anomalie à l'instant de début est d'environ 1,78° : ce sont les mêmes résultats que ceux calculés au chapitre III, dans la section III.4.2, l'Annexe II, A.II.4 A.

Temps (UTCG)	Demi- grand axe [km]	Excentricité	Inclinaison [deg]	RAAN [deg]	Arg. du Périgée [deg]	Anomalie vraie [deg]	Anomalie moyenne [deg]
7/7/11 10:00 AM	42163,637	0,250322	63,4	45	30	15	8,747
7/8/11 10:00 AM	42163,637	0,250322	63,4	44,993	30	16,679	9,737
Variation de	-0,007						
Variation de	0,000						

Tableau IV.6 : Éléments orbitaux classiques de l'orbite MEO « Tundra » elliptique

Pour l'orbite MEO « Tundra » elliptique, la variation de ω ($d\omega$) est nulle, la variation de R.A.A.N ($d\Omega$) est d'environ -0,01° par jour, et l'anomalie à l'instant de début est d'environ 8,75° : ce sont les mêmes résultats que ceux calculés au chapitre III, dans la section III.4.2, l'Annexe II, A.II.4 A.

Temps (UTCG)	Demi- grand axe [km]	Excentricité	Inclinaison [deg]	RAAN [deg]	Arg. du Périgée [deg]	Anomalie vraie [deg]	Anomalie moyenne [deg]
7/7/11 10:00 AM	7028,137	0	72	45	0	45	45
7/8/11 10:00 AM	7028,137	0	72	42,809	0	305,122	305,122
Variation de	-2,191						
Variation de	0,000						

Tableau IV.7 : Éléments orbitaux classiques de l'orbite LEO « inclinée » circulaire

Pour l'orbite LEO « inclinée » circulaire, la variation de R.A.A.N ($d\Omega$) est d'environ -2.19° par jour, et l'anomalie à l'instant de début est d'environ 45° : ce sont les mêmes résultats que ceux calculés au chapitre III, dans la section III.4.2, l'Annexe II, A.II.4 A. Mais la variation de ω ($d\omega$) est nulle, alors que la valeur trouvée au chapitre III, dans la section III.4.2, l'Annexe II, A.II.4 A, est d'environ -1,85°/jour. Ceci vient du fait que dans STK, pour une orbite circulaire, la valeur de l'argument du périgée est définie à zéro (ex. périastre au nœud ascendant).

Temps (UTCG)	Demi- grand axe [km]	Excentricité	Inclinaison [deg]	RAAN [deg]	Arg. du Périgée [deg]	Anomalie vraie [deg]	Anomalie moyenne [deg]
7/7/11 10:00 AM	7028,137	0	90	45	0	45	45
7/8/11 10:00 AM	M 7028,137 0 90				0	302,414	302,414
Variation de	0,000						
Variation de	0,000						

Tableau IV.8 : Éléments orbitaux classiques de l'orbite LEO « polaire » circulaire

Pour l'orbite LEO « polaire » circulaire, la variation de R.A.A.N ($d\Omega$) est de 0° par jour, et l'anomalie à l'instant de début est d'environ 45° : ces mêmes valeurs ont été trouvées au chapitre III, dans la section III.4.2, l'Annexe II, A.II.4 A. Mais la variation de ω ($d\omega$) est nulle, tandis que les calculs sous MATLAB ont donné une valeur d'environ -3,55°/jour. Cet écart vient du fait que dans STK, pour une orbite circulaire, la valeur de l'argument du périgée est définie à zéro (ex. périastre au nœud ascendant).

B. <u>Accès et l'AER</u>

STK nous permet de déterminer un « **intervalle d'accès** », c'est-à-dire la période de temps pendant laquelle un objet peut accéder à un autre objet ou le voir. En d'autres termes, c'est le temps pendant lequel le champ de visibilité (*Line Of Sight, LOS*) entre deux objets est possible. En outre, nous pouvons imposer des contraintes sur les accès entre les objets afin de définir ce qui constitue un accès valide. Ces contraintes sont définies comme des propriétés des objets entre lesquels les accès sont calculés. STK peut calculer l'accès depuis tous les types de véhicules, d'installations, de cibles, de zones visées, et des capteurs vers tous les objets (y compris les planètes et les étoiles) dans un scénario.

STK nous permet également de calculer l'ARE [*Azimut, Elevation and Range*] (distance linéaire entre deux points) entre deux objets lors de l'accès pendant l'intervalle de temps compris entre l'instant de début et l'instant d'arrêt et pour chaque point d'éphémérides disponible.

Les valeurs des temps d'accès et de l'AER pour différents types d'orbite sont données dans l'Annexe A.III.3.

IV.2.4 Synthèse des résultats des simulations de mécanique orbitale

D'après le Tableau IV.10, nous pouvons observer que :

- La variation de R.A.A.N ($d\Omega$) et la variation de ω ($d\omega$) sont plus importantes pour des orbites de petite taille (c'est-à-dire ayant une altitude ou un demi-grand axe de faible valeur) comme les orbites LEO et VLEO elliptiques. Et elles sont égales à 0 pour l'orbite « polaire » circulaire.

- Le nombre d'accès et donc la durée totale de visibilité dépendent de l'inclinaison et de l'altitude de l'orbite. La durée totale de visibilité pour un lieu donné est importante quand l'altitude de l'orbite est haute ou quand l'inclinaison du satellite place le satellite à la bonne position au-dessus de la station terrestre.
- En comparaison avec des orbites de petite taille comme les orbites LEO et VLEO, les orbites de plus grande taille comme l'orbite MEO ont une période orbitale plus longue, et donc un nombre de passages et un nombre d'accès par jour plus faibles, mais une durée de visibilité plus longue.
- L'angle d'élévation des stations terrestres de nos scénarii de simulation n'est pas limité a priori par une valeur minimale. Pour éviter que les stations terrestres, à très basse élévation, rencontrent des objets dans leur champ de visibilité, STK permet d'ajouter une contrainte sur l'angle d'élévation minimal d'une station terrestre. Un bon angle d'élévation minimal typique a une valeur comprise entre 5 et 8 degrés, mais la valeur peut augmenter selon la zone considérée, le terrain environnant, et même les bâtiments. Une synthèse des résultats de mécanique orbitale produits avec une contrainte d'angle d'élévation minimal à 6 degrés est donnée dans le Tableau IV.11. Cette contrainte diminue la durée totale de visibilité ou le nombre d'accès, ainsi que les distances maximale et moyenne.

IV.3 Constellations en couverture continue de la Terre pour différents types d'orbite

IV.3.1 Objectif des scenarii de simulation

Une constellation de nanosatellites est considérée. L'objectif des scénarii de simulation décrits dans cette section est de répondre à la question de savoir s'il est possible, pour différents types d'orbite envisagés dans le Tableau IV.1, de concevoir une constellation (obtenue par la méthode « Walker Star » ou la méthode « Walker Delta ») offrant une couverture continue de la Terre, et si oui, de trouver la constellation optimale pour chaque type d'orbite.

IV.3.2 <u>Méthode de recherche de la constellation optimale</u>

Les stations terrestres et les nanosatellites sont tout d'abord créés dans STK. Ensuite, pour trouver la constellation optimale de satellites, deux programmes sont utilisés. L'un est un programme C qui sert à générer une combinaison du nombre de plans P et du nombre de satellites par plan N à tester dans STK. L'autre est STK qui est utilisé pour tester si une combinaison du nombre de plans P et du nombre N de satellites par plan peut assurer une couverture continue de la Terre (24 heures/jour).

L'organigramme de l'algorithme utilisé pour trouver la constellation optimale de satellites en vue d'une couverture continue de la Terre est montré sur la

Figure IV.4. Cet algorithme a été programmé en C. Le code C de cet algorithme est donné dans l'Annexe III, section A.III.4.

Pour trouver la constellation optimale de satellites, les valeurs de P_min , P_max , N_min et N_max sont choisies égales ou à peu près égales aux valeurs approximatives calculées au chapitre III, dans la section III.5.1 A. Rappelons que les valeurs approximatives de P_min , P_max , N_min et N_max sont calculées pour les différents types d'orbite respectivement aux altitudes minimale, maximale et moyenne (pour une orbite elliptique) du satellite ou à une altitude constante du satellite (pour une orbite circulaire), avec un angle d'élévation de 5 degrés, et pour une vélocité constante du satellite tout au long de l'orbite. Les valeurs choisies de P_min , P_max , N_min et N_max pour trouver les constellations optimales en couverture continue de la Terre pour les différents types d'orbite sont montrées dans le Tableau IV.9.

Type diaubite	V	aleur apj	proximati	ive	Valeur choisie			
i ype u orbite	P_min	P_max	N_min	N_max	P_min	P_max	N_min	N_max
LEO elliptique	5	8	7	16	5	8	7	16
VLEO elliptique	9	10	13	14	9	10	13	14
MEO « Molniya » elliptique	2	4	4	64	2	4	4	64
MEO « Tundra » elliptique	,	2	12	21		2	4	21
LEO « inclinée » circulaire	7		10		6	8	7	12
LEO « polaire » circulaire	,	7	10		6	8	7	12

Tableau IV.9 : Valeurs choisies de *P_min*, *P_max*, *N_min* et *N_max* pour trouver les constellations optimales en couverture continue de la Terre pour différents types d'orbite

Conditions initiales du propagateur (Propagator Initial Conditions)									
Nom de propagateur =	Nom de propagateur = J2Perturbation								
Temps de début = 7 Ju	I 2011 10:0	0:00,0000	00000 UTC	G					
Temps d'arrête = 8 Jul	2011 10:00):00,00000	0000 UTC	3					
			Elli	ptique		Circulaire			
		LEO	VLEO	MEO "Molniya"	MEO "Tundra"	LEO "Incliné"	LEO "Polaire"		
Rayon du périgée	[km]	6732,14	6746,14	7628,14	31609,14	7028,14	7028,14		
Excentricité		0,08	0,00015	0,71	0,25	0,00	0,00		
Inclinaison	[deg]	71,00	40,02	63,40	63,40	72,00	90,00		
RAAN	[deg]	45,00	45,00	45,00	45,00	45,00	45,00		
Arg. du périgée	[deg]	30,00	30,00	30,00	30,00	0,00	0,00		
Anomalie vraie	[deg]	15,00	15,00	15,00	15,00	45,00	45,00		
Période orbitale	[min]	103,00	91,93	717,79	1436,04	97,73	97,73		
Variation de R.A.A.N $(d\Omega)$	[deg/jour]	-2,066	-6,271	-0,125	-0,007	-2,191	0.000		
Variation de ω ($d \omega$)	[deg/jour]	-1,491	7,911	0,000	0,000	0,000	0.000		
Nombre de passages par jour		14	16	2	1	15	15		
Satellite-Liege									
Nombre d'accès par jour		8	4	3	2	9	8		
Durée minimale	[min]	8,090	4,455	9,096	196,050	7,902	2,970		
Durée maximale	[min]	16,944	8,548	130,930	714,931	13,886	13,471		
Durée moyenne	[min]	11,526	7,068	57,484	455,490	11,017	9,831		
Durée totale	[min]	92,208	28,274	172,453	910,981	99,155	78,645		
Élevation minimale	[deg]	0,000	0,000	0,000	0,000	0,000	0,000		
Élevation maximale	[deg]	50,874	11,637	87,063	85,475	78,393	57,652		
Élevation moyenne	[deg]	11,014	3,891	15,613	39,970	11,395	10,259		
Distance minimale	[km]	800,860	1284,078	1646,656	25689,673	675,122	770,399		
Distance maximale	[km]	4169,071	2226,929	33573,392	52246,386	2998,981	3000,459		
Distance moyenne	[km]	2374,614	1865,168	17604,454	37868,385	2206,953	2258,115		
		Sat	<mark>ellite-Tou</mark>	louse					
Nombre d'accès pa	ar jour	7	6	3	2	7	7		
Durée minimale	[min]	1,122	1,907	11,076	222,997	7,493	3,853		
Durée maximale	[min]	18,285	10,097	150,481	764,169	13,887	13,435		
Durée moyenne	[min]	10,432	7,388	61,578	493,583	10,672	9,433		
Durée totale	[min]	73,022	44,331	184,733	987,166	74,701	66,031		
Élevation minimale	[deg]	0,000	0,000	0,000	0,000	0,000	0,000		
Élevation maximale	[deg]	61,429	39,008	80,097	84,771	81,494	56,743		
Élevation moyenne	[deg]	11,528	8,824	15,903	38,899	12,613	10,408		
Distance minimale	[km]	851,403	575,540	1488,999	25463,743	666,655	774,229		
Distance maximale	[km]	4268,75	2227,247	36008,063	51884,671	2995,151	2995,151		
Distance moyenne	[km]	2531,46	1614,832	19709,426	38291,899	2185,873	2236,931		

Tableau IV.10 : Résumé des résultats de mécanique orbitale sans la contrainte de l'angle d'élévation minimal

Conditions initiales du propagateur (Propagator Initial Conditions)									
Nom de propagateur =	Nom de propagateur = J2Perturbation								
Temps de début = 7 Ju	l 2011 10:0	0:00,00000	0000 UTC	G					
Temps d'arrête =8Jul	2011 10:00	:00,00000	0000 UTCG	ì					
			Elli	ptique		Circulaire			
		LEO	VLEO	MEO "Molniya"	MEO "Tundra"	LEO "Incliné"	LEO "Polaire"		
Rayon du périgée	[km]	6732,14	6746,14	7628,14	31609,14	7028,14	7028,14		
Excentricité		0,08	0,00015	0,71	0,25	0,00	0,00		
Inclinaison	[deg]	71,00	40,02	63,40	63,40	72,00	90,00		
RAAN	[deg]	45,00	45,00	45,00	45,00	45,00	45,00		
Arg. du périgée	[deg]	30,00	30,00	30,00	30,00	0,00	0,00		
Anomalie vraie	[deg]	15,00	15,00	15,00	15,00	45,00	45,00		
Période orbitale	[min]	103,00	91,93	717,79	1436,04	97,73	97,73		
Variation de R.A.A.N $(d\Omega)$	[deg/jour]	-2,066	-6,271	-0,125	-0,007	-2,191	0.000		
Variation de ω ($d\omega$)	[deg/jour]	-1,491	7,911	0,000	0,000	0,000	0.000		
Nombre de passages p	oar jour	14	16	2	1	15	15		
Satellite-Liege									
Nombre d'accès par jour		6	3	3	2	8	5		
Durée minimale	[min]	2,082	1,741	7,737	175,588	0,202	4,179		
Durée maximale	[min]	13,533	4,912	98,930	676,328	10,924	10,545		
Durée moyenne	[min]	8,676	3,546	43,778	425,958	7,174	8,603		
Durée totale	[min]	52,057	10,638	131,334	851,916	57,393	43,014		
Élevation minimale	[deg]	6,000	6,000	6,000	6,000	6,000	6,000		
Élevation maximale	[deg]	50,874	11,637	87,063	85,475	78,393	57,652		
Élevation moyenne	[deg]	17,409	7,689	19,324	42,487	17,548	17,282		
Distance minimale	[km]	800,860	1284,078	1646,656	25689,673	675,122	770,399		
Distance maximale	[km]	3463,247	1657,202	29184,522	51648,059	2403,863	2403,825		
Distance moyenne	[km]	1923,877	1537,389	15494,984	37338,468	1818,369	1796,127		
		Sate	ellite-Toul	ouse					
Nombre d'accès pa	ar jour	5	4	3	2	6	4		
Durée minimale	[min]	5,061	5,498	9,555	200,736	4,201	7,557		
Durée maximale	[min]	14,957	7,281	118,055	725,892	10,922	10,508		
Durée moyenne	[min]	9,256	6,542	48,399	463,314	7,580	9,290		
Durée totale	[min]	46,279	26,168	145,198	926,628	45,483	37,159		
Élevation minimale	[deg]	6,000	6,000	6,000	6,000	6,000	6,000		
Élevation maximale	[deg]	61,429	39,008	80,097	84,771	81,494	56,743		
Élevation moyenne	[deg]	17,637	14,317	19,347	41,289	19,072	17,459		
Distance minimale	[km]	851,403	575,540	1488,999	25463,743	666,655	774,229		
Distance maximale	[km]	3577,479	1657,769	32070,421	51531,301	2398,205	2398,286		
Distance moyenne	[km]	2101,613	1249,361	17851,096	37796,872	1801,832	1767,512		

Tableau IV.11 : Résumé des résultats de mécanique orbitale avec une contrainte de l'angle d'élévation minimal à 6 degrés

IV.3.3 Constellations optimales en couverture continue de la Terre

Paramètres de constellation (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Durée totale [min]	Pourcentage total (%)	Couverture continue de la Terre ?
71°: 8/7/1	1440	100	Oui
71° : 7/8/1	1440	100	Oui
71° : 7/7/1	1440	100	Oui
71° : 6/8/1	1440	100	Oui
71°:6/7/1	1371,9	95,27	Non
71° : 5/9/1	92,8	6,45	Non
I a second all diam and investored a 710	. (/0/1 . 1		-11:4

A. Orbite LEO elliptique

La constellation optimale est : 71° : 6/8/1, donc le nombre total minimal de satellites est 48.

Tableau IV.12 : Constellations « Walker Delta » en couverture continue de la Terre pour une orbite LEO elliptique

Des graphiques 2D et 3D illustrant la constellation « Walker Delta » de l'orbite LEO elliptique définie par 71° : 6/8/1 et 71° : 5/9/1 sont donnés sur la Figure IV.5 et Figure IV.6 respectivement.

B. Orbite VLEO elliptique

Paramètres de constellation (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Couverture continue de la Terre ?					
40,02° : 10/13/1	Aucune période de couverture de la Terre (globale) n'existe					
40,02° : 10/14/1	Aucune période de couverture de la Terre (globale) n'existe					
Donc, aucune période de couverture globale de la Terre n'existe						

Tableau IV.13 : Constellation « Walker Delta » en couverture continue de la Terre pour une orbite VLEO elliptique

Pour une orbite VLEO elliptique, aucune couverture globale continue de la Terre n'est possible à cause de l'inclinaison de l'orbite qui ne peut pas offrir de couverture aux altitudes supérieures à environ 60° et aux altitudes en-dessous d'environ -60° .

Des graphiques 2D et 3D illustrant la constellation « Walker Delta » de l'orbite VLEO elliptique définie par $40,02^{\circ}$: 10/14/1 sont donnés sur la Figure A.III.12 en Annexe III, A.III.6.

Paramètres de constellation (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Durée totale [min]	Pourcentage total (%)	Couverture continue de la Terre ?
63,40° : 4/4/1	538,9	37,42	Non
63,40° : 4/5/1	635,8	44,15	Non
63,40° : 4/6/1	791,08	54,94	Non
63,40° : 4/7/1	910,26	63,21	Non
63,40° : 4/8/1	1006,08	69,87	Non
63,40° : 4/9/1	1109,01	77,01	Non
63,40° : 4/10/1	1222,56	84,9	Non
63,40° : 4/11/1	1279,47	88,85	Non
63,40° : 4/12/1	1344,93	93,4	Non
63,40° : 4/13/1	1386,06	96,25	Non
63,40° : 4/14/1	1423,231	98,84	Non
63,40° : 4/15/1	1440	100	Oui
63,40° : 3/20/1	1440	100	Oui
63,40° : 3/19/1	1432,05	99,45	Non
63,40° : 2/30/1	704,67	48,94	Non
La constellation optimale est : 63,40°	° : 3/20/1, donc le	nombre total minimal d	e satellites est 60.

C. Orbite MEO « Molniva » elliptique

Tableau IV.14 : Constellation « Walker Delta » en couverture continue de la Terre pour une orbite MEO « Molniya » elliptique

Des graphiques 2D et 3D illustrant la constellation « Walker Delta » de l'orbite MEO « Molniya » elliptique définie par 63,40° : 3/20/1 sont donnés sur la Figure A.III.13 en Annexe III, A.III.6.

La constellation « Walker Delta » optimale pour une orbite MEO « Molniya » elliptique, et définie par les paramètres $63,40^\circ$: 3/20/1, est un peu plus grande en termes du nombre total de satellites (nombre total de satellites de 60). Ce n'est pas anormal, car comme cela a été explicité au chapitre III.7, dans la section *§III.7.2 Constellation de l'orbite elliptique*, la constellation « Walker Delta » ne peut pas offrir une bonne constellation optimale pour une orbite elliptique et pour une couverture continue de la Terre, car il y aurait de nombreux chevauchements des empreintes des satellites. Pour une constellation d'orbites elliptiques, la méthode « Walker Delta » devrait être utilisée pour assurer une couverture continue d'une zone spécifique.

D. <u>Orbite MEO « Tundra » elliptique</u>

Paramètres de constellation (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Durée totale [min]	Pourcentage total (%)	Couverture continue de la Terre ?			
63,40° : 2/4/1	1334,764	92,69	Non			
63,40° : 2/5/1	1440	100	Oui			
La constellation optimale est : $63,40^{\circ}$: $2/5/1$, donc le nombre total minimal de satellites est 10.						

Tableau IV.15 : Constellation « Walker Delta » en couverture continue de la Terre pour une orbite MEO « Tundra » elliptique

La constellation « Walker Delta » d'orbites MEO « Tundra » elliptiques définie par les paramètres 63,40° : 2/5/1 est illustrée par les graphiques 2D et 3D de la Figure A.III.14 en Annexe III, A.III.6.

E.	Orbite LEO «	inclinée »	circulaire

Paramètres de constellation (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Durée totale [min]	Pourcentage total (%)	Couverture continue de la Terre ?		
72°: 8/7/1	N/A (non applicable)		Non		
72°: 8/8/1	1440	100	Oui		
72° : 7/9/1	1440	100	Oui		
72°: 7/8/1	N/A		Non		
72° : 6/10/1	N/A		Non		
La constellation optimale est : 72° : $7/9/1$, donc le nombre total minimal de satellites est 63.					

Tableau IV.16 : Constellation « Walker Delta » en couverture continue de la Terre pour des orbites LEO « inclinées » circulaires

La constellation « Walker Delta » d'orbites LEO « inclinées » circulaires définie par 72° : 7/9/1 est illustrée par les graphiques 2D et 3D de la Figure A.III.15 en Annexe III, A.III.6.

Paramètres de constellation (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Durée totale [min]	Pourcentage total (%)	Couverture continue de la Terre ?			
90° : 8/7/1	1,252	0,087	Non			
90° : 8/8/1	1440	100	Oui			
90° : 7/9/1	1440	100	Oui			
90° : 7/8/1	1440	100	Oui			
90° : 7/7/1		N/A ¹	Non			
90° : 6/9/1	1440	100	Oui			
90° : 6/8/1	1329,139	92,301286	Non			
La constellation optimale est : 90° : $6/9/1$, donc le nombre total minimal de satellites est 54.						

F. Orbite LEO « polaire » circulaire

Tableau IV.17 : Constellation « Walker Star » en couverture continue de la Terre pour des orbites LEO « polaires » circulaires

La constellation « Walker Star » d'orbites LEO « polaires » circulaires définie par 90° : 6/9/1 est illustrée sur les graphiques 2D et 3D de la Figure A.III.16 en Annexe III, A.III.6.

IV.3.4	Résumé	de l'o	ptimisation	des	constellations

Type d'orbite	Couverture continue de la Terre ?	Constellation optimale (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Nombre total de satellites
LEO elliptique	Oui	71°: 6/8/1	48
VLEO elliptique	Non	40,02°: NA/NA/NA	N/A
MEO « Molniya » elliptique	Oui	63,40°: 3/20/1	60
MEO « Tundra » elliptique	Oui	63,40°: 2/5/1	10
LEO « inclinée » circulaire	Oui	72°: 7/9/1	63
LEO « polaire » circulaire	Oui	90°: 6/9/1	54

Tableau IV.18 : Constellations optimale en couverture continue de la Terre

¹ N/A : Non applicable.

IV.4 <u>Constellation de satellites optimale pour des orbites de basse altitude pour couvrir une</u> région spécifique

IV.4.1 Description des scénarii de simulation

Dans cette section, l'objectif des scenarii de simulation mis en place dans STK est de trouver une constellation optimale qui fournit une couverture continue (24 heures/jour) pour une zone spécifiée (entre deux endroits précis). Deux scénarii, l'un pour des orbites LEO « inclinées » circulaires, et l'autre pour des orbites LEO elliptiques, sont créés afin de valider un cas de couverture continue sur une zone spécifique dont les délimitations sont définies par les positions de deux stations terrestres : une station terrestre située à Liège, en Belgique (latitude : 50,62°, longitude : 5,5667°) et une station terrestre située à Toulouse (latitude : 43,60°, longitude : 1,4333°). Les communications entre les deux stations terrestres transitent par un nanosatellite. Ces deux scénarii seront testés et comparés.

IV.4.2 <u>Méthode pour trouver la constellation optimale</u>

La méthode qui permet d'obtenir les constellations optimales est similaire à celle décrite et utilisée dans la section IV.3.2 . L'organigramme de l'algorithme C utilisé pour produire une combinaison du nombre de plans P et du nombre N de satellites par plan à tester dans STK est donné sur la Figure IV.7 ci-après.

Les valeurs de P_min , P_max , N_min et N_max sont choisies prudemment. Les valeurs de P_max et N_max sont choisies égales aux valeurs optimales P et N de la constellation globale en couverture continue de la Terre, telles qu'indiquées dans le Tableau IV.18 de la section IV.3.4 , car les valeurs P et N requises pour une constellation de satellites pour couvrir une zone spécifiée doivent être, à l'évidence, plus faibles que dans le cas de la couverture globale continue de la Terre. Les valeurs choisies de P_min , P_max , N_min et N_max pour trouver la constellation optimale en couverture continue d'une zone spécifique pour des orbites LEO elliptiques et LEO « inclinées » circulaires sont présentées dans le Tableau IV.19.

Type d'orbite	LEO elliptique	LEO « inclinée » circulaire
<i>P_min</i> , <i>P_max</i> , <i>N_min</i> et <i>N_max</i> choisies pour une couverture globale continue de la Terre	P_min = 5 P_max = 8 N_min = 7 N_max = 16	P_min = 6 P_max = 8 N_min = 7 N_max = 12
Valeusr optimales de P et N	P = 6 $N = 8$	P = 7 $N = 9$
<i>P_min</i> , <i>P_max</i> , <i>N_min</i> et <i>N_max</i> choisies pour une couverture continue d'une zone spécifique	P_max = 6 N_max = 8 P_min = 5 N_min = 5	P_max = 7 N_max = 9 P_min = 5 N_min = 5

Tableau IV.19 : Valeurs choisies de *P_min*, *P_max*, *N_min* et *N_max* pour trouver la constellation optimale en couverture continue d'une zone spécifique pour des orbites LEO elliptiques et LEO « inclinées » circulaires

IV.4.3 <u>Constellations optimales en couverture continue sur une zone spécifique</u>

A. Orbite LEO elliptique

Constellation (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Durée totale [min]	Couverture continue?
71°: 6/8/1	1440	Oui
71°: 6/7/1	1440	Oui
71°: 6/6/1	1438,13	Non
71°: 5/8/1	1434,23	Non
\mathbf{I}_{2} = I	tal minimal da aatalli	tag agt 12

La constellation optimale est : 71° : 6/7/1, donc le nombre total minimal de satellites est 42.

Tableau IV.20 : Constellation optimale par la méthode « Walker Delta » pour des orbites LEO elliptiques en couverture continue d'une zone spécifique

Une économie de 6 satellites est réalisée par rapport au cas de la couverture globale continue de la Terre, pour le même type d'orbite, avec la constellation « Walker Delta ».

Constellation (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Durée totale [min]	Couverture continue ?
72°: 7/9/1	1440	Oui
72°: 7/8/1	1440	Oui
72°: 7/7/1	1440	Oui
72°: 7/6/1	1440	Oui
72°: 7/5/1	1437,483	Non
72°:6/7/1	1440	Oui
72°: 6/6/1	1439,986	Non
72° : 5/8/1	1403,304	Non
La constellation optimale est : 72° : $6/7/1$, donc le nombre to	tal minimal de satelli	ites est 42.

B. <u>Orbite LEO « inclinée » circulaire</u>

Tableau IV.21 : Constellation « Walker Delta » en couverture continue d'une zone spécifique (Toulouse-Liège) pour des orbites LEO « inclinées » circulaires

Une économie de 21 satellites est réalisée par rapport au cas de la couverture globale continue de la Terre, pour le même type d'orbite, avec la constellation « Walker Delta ».

IV44 S	vnthèse d	des résultats	d'o	ntimisation	des	constellations
IV.T.T D	ynunese v	acs resultuis	u u	pumbation	ues	constenations

Type d'orbite	Constellation optimale en couverture continue de la Terre (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Constellation optimale en couverture continue sur une zone spécifique (Toulouse-Liège) (inclinaison : nombre de plans/ nombre de satellites par plan/ espacement entre plans)	Nombre de satellites économisés
LEO elliptique	71°: 6/8/1	71°: 6/7/1	6
LEO "inclinée" circulaire	72°: 7/9/1	72°: 6/7/1	21

Tableau IV.22 : Constellations « Walker Delta » optimales en couverture continue d'une zone spécifique entre Toulouse et Liège

Remarque :

Pour le cas présent, l'orbite LEO « inclinée » circulaire permet d'avoir un plus faible nombre de satellites que pour l'orbite LEO elliptique. Mais ce résultat dépend de la zone sélectionnée. Car, en réalité, l'orbite LEO elliptique donnerait lieu à une constellation plus optimale que celle de l'orbite circulaire sur certaines zones, parce que la couverture de l'orbite circulaire ne s'étend pas à son apogée comme celle de l'orbite elliptique, comme cela a été expliqué au chapitre III, dans la section III.5.2.

IV.5 <u>Bilans de liaison entre un nanosatellite en basse orbite terrestre et une station terrestre</u> <u>située à Liège</u>

IV.5.1 Description des scénarii de simulation

Les scénarii mis en œuvre dans STK et décrits dans cette section ont pour objectif de déterminer les bilans de liaison entre un nanosatellite et une station terrestre située à Liège, en Belgique, dans les deux cas de figure suivants : le nanosatellite est d'abord en orbite LEO elliptique, puis en orbite LEO « inclinée » circulaire.

Un résumé des caractéristiques du système de communication étudié sont présentées dans le Tableau IV.23.

STK est utilisé pour créer les scénarii comprenant les stations terrestres et le nanosatellite, placé sur différentes orbites. Ensuite, pour chaque scénario, les antennes, les émetteurs et les récepteurs du module STK/Communications sont mis en œuvre pour modéliser les communications impliquées dans le système et pour évaluer les bilans de liaison associés.

Émetteurs						
		Vers le satellite	Vers la station terrestre de Liège			
Bande de fréquence (UHF/VHF)						
		Liaison descendante (VHF)	Liaison montante (UHF)			
Fréquence	[MHz]	145	435			
Puissance						
Protocole		AX.25 et D-STAR				
Puissance transmise	[W]	0,75 20				
	[dBW]	-1,25	13,01			
Protocole		Balis	se			
Puissance transmise	[W]	0,1	0,1			
	[dBW]	-10	-10			

<u>Antenne</u>						
Type d'antenne			Monopole	Yagi		
Gain d'antenne		[dBi]	2,15	13,35		
Pertes de dépointage d'anter	ine	[dB]	7,6	0,15		
Pertes de dépolarisation d'ar	ntenne	[dB]	0,2283	0,2283		
<u>Pertes des lignes de transm</u>	<u>iission</u>					
Pertes totales des lignes de transmission		[dB]	1,02	3,09		
Débits des données et types	s de modulat	tion				
Protocole	Ba	lise	AX.25	D-STAR		
Débit des données	12 WPM	ou 20 bps	9,6 kbit/s	DV Mode : 4,8 kbit/s		
Type de modulation	FSK non-	cohérente	FSK non-cohérente	GMSK		
Codage	Au	cun	Aucun	Aucun		
		Pertes de	propagation			
			Liaison descendante	Liaison montante		
Fráquanaa		[MII-]	(VHF) 145	(UHF) 425		
Pertes en espace libre à l'alti	tude		145	435		
minimale du satellite			140,14	149,68		
Pertes atmospheriques			2,10	2,10		
Pertes ionosphériques		[dB]	0,80	0,40		
Pertes dues à la pluie		[dB]	0,00	0,00		
Récepteurs						
				Vanala station		
			Vers le satellite	Vers la station terrestre de Liège		
<u>Bande de fréquence</u> (UHF/	VHF)		Vers le satellite	Vers la station terrestre de Liège		
Bande de fréquence (UHF/	VHF)		Vers le satellite Liaison descendante (VHF)	Vers la station terrestre de Liège Liaison montante (UHF)		
Bande de fréquence (UHF/ Fréquence	/VHF)	[MHz]	Vers le satellite Liaison descendante (VHF) 145	Vers la station terrestre de Liège Liaison montante (UHF) 435		
Bande de fréquence (UHF/ Fréquence <u>Antenne</u>	(VHF)	[MHz]	Vers le satellite Liaison descendante (VHF) 145	Vers la station terrestre de Liège Liaison montante (UHF) 435		
Bande de fréquence (UHF/ Fréquence <u>Antenne</u> Type d'antenne	(VHF)	[MHz]	Vers le satellite Liaison descendante (VHF) 145 Yagi	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole		
Bande de fréquence (UHF/ Fréquence <u>Antenne</u> Type d'antenne Gain d'antenne	VHF)	[MHz] [dBi]	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15		
Bande de fréquence (UHF/ Fréquence <u>Antenne</u> Type d'antenne Gain d'antenne Pertes de dépointage d'anter	VHF)	[MHz] [dBi] [dB]	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6		
Bande de fréquence (UHF/ Fréquence <u>Antenne</u> Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm	(VHF)	[MHz] [dBi] [dB]	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6		
Bande de fréquence (UHF/ Fréquence Antenne Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm Pertes totales en ligne, de l'a jusqu'au LNA	VHF)	[MHz] [dBi] [dB] [dB]	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15 1,85	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6 0,83		
Bande de fréquence (UHF/ Fréquence Antenne Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm Pertes totales en ligne, de l'a jusqu'au LNA Gain du LNA	VHF)	[MHz] [dBi] [dB] [dB] [dB]	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15 1,85 20	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6 0,83 20		
Bande de fréquence (UHF/ Fréquence Antenne Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm Pertes totales en ligne, de l'a jusqu'au LNA Gain du LNA Pertes en ligne, du LNA au f	VHF)	[MHz] [dBi] [dB] [dB] [dB] [dB]	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15 1,85 20 0,5	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6 0,83 20 0		
Bande de fréquence (UHF/ Fréquence Antenne Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm Pertes totales en ligne, de l'a jusqu'au LNA Gain du LNA Pertes en ligne, du LNA au n Température de bruit efficace	VHF)	[MHz] [dBi] [dB] [dB] [dB] [dB] [dB] [K]	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15 1,85 20 0,5 681,13	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6 0,83 20 0 219,66		
Bande de fréquence (UHF/ Fréquence Antenne Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm Pertes totales en ligne, de l'a jusqu'au LNA Gain du LNA Pertes en ligne, du LNA au n Température de bruit efficace Débits des données et types	VHF)	[MHz] [dBi] [dB] [dB] [dB] [dB] [dB] [K] tion	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15 1,85 20 0,5 681,13	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6 0,83 20 0 219,66		
Bande de fréquence (UHF/ Fréquence Antenne Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm Pertes totales en ligne, de l'a jusqu'au LNA Gain du LNA Pertes en ligne, du LNA au n Température de bruit efficace Débits des données et types Protocole	VHF)	[MHz] [dBi] [dB] [dB] [dB] [dB] [dB] [K] tion	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15 1,85 20 0,5 681,13 AX.25	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6 0,83 20 0 219,66 D-STAR		
Bande de fréquence (UHF/ Fréquence Antenne Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm Pertes totales en ligne, de l'a jusqu'au LNA Gain du LNA Pertes en ligne, du LNA au n Température de bruit efficace Débits des données et types Protocole Débit des données	YHF) me iission intenne récepteur e s de modulat Ba 12 WPI b	[MHz] [dBi] [dB] [dB] [dB] [dB] [dB] [K] tion lise M ou 20 ps	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15 1,85 20 0,5 681,13 AX.25 9,6 kbit/s	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6 0,83 20 0 219,66 D-STAR DV Mode: 4,8 kbit/s		
Bande de fréquence (UHF/ Fréquence Antenne Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm Pertes totales en ligne, de l'a jusqu'au LNA Gain du LNA Pertes en ligne, du LNA au n Température de bruit efficace Débits des données et types Protocole Débit des données Type de modulation	VHF)	[MHz] [dBi] [dB] [dB] [dB] [dB] [dB] [K] tion lise M ou 20 ps non- rente	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15 1,85 20 0,5 681,13 AX.25 9,6 kbit/s FSK non-cohérente	Vers la station terrestre de Liège Liaison montante (UHF) 435 Monopole 2,15 7,6 0,83 20 0 219,66 D-STAR DV Mode: 4,8 kbit/s GMSK		
Bande de fréquence (UHF/ Fréquence Antenne Type d'antenne Gain d'antenne Pertes de dépointage d'anter Pertes des lignes de transm Pertes totales en ligne, de l'a jusqu'au LNA Gain du LNA Pertes en ligne, du LNA au n Température de bruit efficace Débits des données et types Protocole Débit des données Type de modulation Codage	VHF) me iission intenne éccepteur e de modulat fSK cohé Au	[MHz] [dBi] [dB] [dB] [dB] [dB] [dB] [k] [k] lise M ou 20 ps non- rente cun	Vers le satellite Liaison descendante (VHF) 145 Yagi 13,35 0,15 1,85 20 0,5 681,13 AX.25 9,6 kbit/s FSK non-cohérente Aucun	Vers la station terrestre de Liège		

E _b /N ₀ requis	13,35 dB	13,35 dB	9,72 dB
Pertes de mise en œuvre du démodulateur	1 dB	1 dB	1 dB
E _b /N ₀ seuil	14,35 dB	14,35 dB	10,72 dB

Tableau IV.23 : Principales caractéristiques du système de communication étudié

IV.5.2 Bilans de liaison du système satellitaire en orbite terrestre basse

A. Orbite LEO elliptique

En utilisant les capacités de calcul du logiciel de simulation STK, les bilans de liaison pour l'orbite LEO elliptique indiqués dans les tableaux Tableau IV.24Tableau IV.25 et Tableau IV.26 ont été obtenus.

Dentanala AV 25	Liaison descendante			Liaison montante		
Protocole AX.25		Eb/No Min	Eb/No Max	Eb/No Min		Eb/No Max
Temps [UTCG]	7-juil-11 10:00:00 AM	7-juil-11 7:07:25 PM	7-juil-11 10:03:24 AM	7-juil-11 10:00:00 AM	7-juil-11 7:07:25 PM	7-juil-11 10:03:24 AM
Puissance transmise (Xmtr Power) [dBW]	-1,249	-1,249	-1,249	14:24,0	13,01	13,01
PIRE (EIRP) [dBW]	-0,119	-0,119	-0,119	23,27	23,27	23,27
Distance (Range) [km]	1721,897021	4169,070898	800,860447	1721,8561	4169,070972	800,859346
Perte dans l'espace libre [dB]	-140,3953	-148,0759	-133,7463	-149,9375	-157,6184	-143,2887
Rapport signal sur bruit C/No [dBHz]	60,912165	53,231523	67,561171	69,354424	61,673575	76,003236
Eb/No [dB]	21,0895	13,4088	27,7385	29,5317	21,8509	36,1805
BER	6,21E-29	8,68E-06	1,00E-30	1,00E-30	1,00E-30	1,00E-30
Retard de propagation [sec]	0,006	0,014	0,003	0,006	0,014	0,003
Eb/No seuil [dB]	14,35	14,35	14,35	14,35	14,35	14,35
Marge du système [dB]	6,7395	-0,9412	13,3885	15,1817	7,5009	21,8305
		Aucur	ne contrainte			
Nombre d'accès	8			8		
Durée totale d'accès [min]	92,208			92,207		
Avec une contrainte minimale de bilans de liaison (marge du système) de 6 dB						
Nombre d'accès	4			8		
Durée totale d'accès [min]	28,063			92,207		

Tableau IV.24 : Bilans de liaison pour l'orbite LEO elliptique pour le canal AX.25

Durata calo D. STAD	Liaison descendante			Liaison montante			
FIOLOCOLE D-STAK		Eb/No Min	Eb/No Max		Eb/No Min	Eb/No Max	
Temps [UTCG]	7-juil-11 10:00:00 AM	7-juil-11 7:07:25 PM	7-juil-11 10:03:24 AM	7-juil-11 10:00:00 AM	7-juil-11 7:07:25 PM	7-juil-11 10:03:24 AM	
Puissance transmise (Xmtr Power) [dBW]	-1,249	-1,249	-1,249	14:24,0	13,01	13,01	
PIRE (EIRP) [dBW]	-0,119	-0,119	-0,119	23,27	23,27	23,27	
Distance (Range) [km]	1721,897021	4169,070898	800,860447	1721,8561	4169,070972	800,859346	
Perte dans l'espace libre [dB]	-140,3953	-148,0759	-133,7463	-149,9375	-157,6184	-143,2887	
Rapport signal sur bruit C/No [dBHz]	60,912165	53,231523	67,561171	69,354424	61,673575	76,003236	
Eb/No [dB]	24,0998	16,4191	30,7488	32,542	24,8612	39,1908	
BER	1,00E-30	3,83E-21	1,00E-30	1,00E-30	1,00E-30	1,00E-30	
Retard de propagation [sec]	0,006	0,014	0,003	0,006	0,014	0,003	
Eb/No seuil [dB]	10,72	10,72	10,72	10,72	10,72	10,72	
Marge du système [dB]	13,3798	5,6991	20,0288	21,822	14,1412	28,4708	
		Aucun	ne contrainte				
Nombre d'accès	8			8			
Durée totale d'accès [min]	92,208			92,207			
	Avec une contrainte minimale de bilans de liaison (marge du système) de 6 dB						
Nombre d'accès	8			8			
Durée totale d'accès [min]	91,681			92,207			

Tableau IV.25 : Bilans de liaison pour l'orbite LEO elliptique pour le canal D-STAR

Protogolo de la balisa	Liaison descendante				
i rotocole de la ballse		Eb/No Min	Eb/No Max		
Temps [UTCG]	7-juil-11 10:00:00 AM	7-juil-11 7:07:25 PM	7-juil-11 10:03:24 AM		
Puissance transmise (Xmtr Power) [dBW]	-10	-10	-10		
PIRE (EIRP) [dBW]	-8,87	-8,87	-8,87		
Distance (Range) [km]	1721,897021	4169,070898	800,860447		
Perte dans l'espace libre [dB]	-140,3953	-148,0759	-133,7463		
Rapport signal sur bruit C/No [dBHz]	52,161552	44,48091	58,810559		
Eb/No [dB]	39,1513	31,4706	45,8003		
BER	1,00E-30	1,00E-30	1,00E-30		
Retard de propagation [sec]	0,006	0,014	0,003		
Eb/No seuil [dB]	14,35	14,35	14,35		
Marge du système [dB]	24,8013	17,1206	31,4503		
	Aucune contrainte				
Nombre d'accès	8				
Durée totale d'accès [min]	92,208				
Avec une contrainte mini	male de bilans de liaison	(marge du système) de	6 dB		
Nombre d'accès	8				
Durée totale d'accès [min]	92,208				

Tableau IV.26 : Bilans de liaison pour l'orbite LEO elliptique pour le canal de balise

D'après les tableau IV.24Tableau IV.25 et Tableau IV.26, on peut observer que :

- Les durées totales des accès en liaison montante et en liaison descendante sont pratiquement identiques à celles obtenues sous Excel et Matlab, égales à environ 92,21 minutes. La faible différence de 0,001 minute vient du fait que, dans STK, les calculs des temps d'accès (dont ceux vers l'objet visé) sont exécutés sur la base du capteur transmettant le signal.
- Il n'y a aucun effet sur la durée totale d'accès quand la marge minimale du système est plus grande que la contrainte minimale de marge système de 6 dB.
- Pour l'orbite LEO elliptique, et pour la liaison descendante avec le protocole AX.25, la marge minimale du système est de -0,9412 dB et la marge maximale du système est de 13,3885 dB. Donc, avec la contrainte minimale de bilans de liaison de 6 dB, la durée totale d'accès est réduite de 92,208 minutes à 28,063 minutes car l'on considère qu'il n'y a pas l'accès quand le lien de communication a une marge système inférieure à 6 dB (le lien de communication est considéré comme non valide).
- Pour l'orbite LEO elliptique, et pour la liaison montante avec le protocole AX.25, la marge minimale du système est de 7,5 dB et la marge maximale du système est de 21,83 dB. La liaison est donc valide tout au long de l'orbite.
- Pour l'orbite LEO elliptique, en liaison montante avec le protocole D-STAR, la marge minimale du système est de 14.14 dB et la marge maximale du système est de 28.47 dB, donc la marge système est supérieure à 6 dB en permanence. La liaison montante est donc valide tout au long de l'orbite pour la configuration système étudiée.
- Pour l'orbite LEO elliptique, en liaison descendante avec le protocole D-STAR, la marge minimale du système est de 5,7 dB et la marge maximale du système est de 20,03 dB. Par conséquent, avec la contrainte minimale de marge système de 6 dB, la durée totale d'accès est réduite de 92,208 minutes à 91,681 minutes.
- Pour l'orbite LEO elliptique, sur le canal de la balise en liaison descendante, la marge minimale du système est de 17,12 dB et la marge maximale du système est de 31,45 dB. La liaison est donc valide tout au long de l'orbite.
- Sans changer l'orbite, dans les cas où les liaisons ne sont pas valides, les bilans de liaison peuvent être améliorés par exemple en augmentant soit le gain d'antenne de l'émetteur ou du récepteur, soit la puissance de transmission de l'antenne d'émission, ou encore en utilisant un schéma de modulation et codage plus performant.

B. Orbite LEO « inclinée » circulaire

Les bilans de liaison obtenus pour une orbite LEO « inclinée » circulaire sont indiqués dans les tableau Tableau IV.27, Tableau IV.28 et Tableau IV.29.

Duotocolo AV 25	Liaison descendante			Liaison montante			
Protocole AA.25		Eb/No Min	Eb/No Max		Eb/No Min	Eb/No Max	
Temps [UTCG]	7-juil-11 10:00:00 AM	7-juil-11 11:50:21 AM	8-juil-11 8:51:43 AM	7-juil-11 10:00:00 AM	7-juil-11 11:50:21 AM	8-juil-11 8:51:43 AM	
Puissance transmise (Xmtr Power) [dBW]	-1,249	-1,249	-1,249	14:24,0	13,01	13,01	
PIRE (EIRP) [dBW]	-0,119	-0,119	-0,119	23,27	23,27	23,27	
Distance (Range) [km]	1867,728014	2998,980326	675,121807	1867,68903	2998,982503	675,122047	
Perte dans l'espace libre [dB]	-141,1014	-145,2146	-132,2628	-150,6437	-154,757	-141,8052	
Rapport signal sur bruit C/No [dBHz]	60,206035	56,092836	69,044665	68,648269	64,534882	77,486715	
Eb/No [dB]	20,3833	16,2701	29,222	28,8256	24,7122	37,664	
BER	9,56E-25	3,16E-10	1,00E-30	1,00E-30	1,00E-30	1,00E-30	
Retard de propagation [sec]	0,006	0,01	0,002	0,006	0,01	0,002	
Eb/No seuil [dB]	14,35	14,35	14,35	14,35	14,35	14,35	
Marge du système [dB]	6,0333	1,9201	14,872	14,4756	10,3622	23,314	
		Aucun	e contrainte				
Nombre d'accès	9			9			
Durée totale d'accès [min]	99,154	99,154			99,154		
Avec une contrainte minimale de bilans de liaison (marge du système) de 6 dB							
Nombre d'accès	4	4			9		
Durée totale d'accès [min]	30,63			99,154			

Tableau IV.27 : Bilans de liaison pour une orbite LEO « inclinée » circulaire sur le canal AX.25

Durata calo D. STAD	Liaison descendante			Liaison montante		
Protocole D-STAK		Eb/No Min	Eb/No Max		Eb/No Min	Eb/No Max
Temps [UTCG]	7-juil-11 10:00:00 AM	7-juil-11 11:50:21 AM	8-juil-11 8:51:43 AM	7-juil-11 10:00:00 AM	7-juil-11 11:50:21 AM	8-juil-11 8:51:43 AM
Puissance transmise (Xmtr Power) [dBW]	-1,249	-1,249	-1,249	14:24,0	13,01	13,01
PIRE (EIRP) [dBW]	-0,119	-0,119	-0,119	23,27	23,27	23,27
Distance (Range) [km]	1867,728014	2998,980326	675,121807	1867,68903	2998,982503	675,122047
Perte dans l'espace libre [dB]	-141,1014	-145,2146	-132,2628	-150,6437	-154,757	-141,8052
Rapport signal sur bruit C/No [dBHz]	60,206035	56,092836	69,044665	68,648269	64,534882	77,486715
Eb/No [dB]	23,3936	19,2804	32,2323	31,8359	27,7225	40,6743
BER	1,00E-30	1,00E-30	1,00E-30	1,00E-30	1,00E-30	1,00E-30
Retard de propagation [sec]	0,006	0,01	0,002	0,006	0,01	0,002
Eb/No seuil [dB]	10,72	10,72	10,72	10,72	10,72	10,72
Marge du système [dB]	12,6736	8,5604	21,5123	21,1159	17,0025	29,9543
	-	Aucur	e contrainte	-		
Nombre d'accès	9			9		
Durée totale d'accès [min]	99,154			99,154		
Avec une contrainte minimale de bilans de liaison (marge du système) de 6 dB						
Nombre d'accès	9			9		
Durée totale d'accès [min]	99,154			99,154		

Tableau IV.28 : Bilans de liaison pour une orbite LEO « inclinée » circulaire sur le canal D-STAR

Drata colo de la halias	Downlink			
Protocole de la balise		Eb/No Min	Eb/No Max	
Temps [UTCG]	7-juil-11 10:00:00 AM	7-juil-11 11:50:21 AM	8-juil-11 8:51:43 AM	
Puissance transmise (Xmtr Power) [dBW]	-10	-10	-10	
PIRE (EIRP) [dBW]	-8,87	-8,87	-8,87	
Distance (Range) [km]	1867,728014	2998,980326	675,121807	
Perte dans l'espace libre [dB]	-141,1014	-145,2146	-132,2628	
Rapport signal sur bruit C/No [dBHz]	51,455423	47,342223	60,294053	
Eb/No [dB]	38,4451	34,3319	47,2838	
BER	1,00E-30	1,00E-30	1,00E-30	
Retard de propagation [sec]	0,006	0,01	0,002	
Eb/No seuil [dB]	14,35	14,35	14,35	
Marge du système [dB]	24,0951	19,9819	32,9338	
	Aucune contrainte			
Nombre d'accès	9			
Durée totale d'accès [min]	99,154			
Avec une contrainte min	imale de bilans de liaison	(marge du système) de	<u>6 dB</u>	
Nombre d'accès	9			
Durée totale d'accès [min]	99,154			

Tableau IV.29 : Bilans de liaison pour une orbite LEO « inclinée » circulaire sur le canal de balise

D'après les tableau IV.27, Tableau IV.28 et Tableau IV.29, on peut observer que :

- Sur la liaison montante avec le protocole AX.25, le système a une marge minimale de 10,36 dB et une marge maximale de 23,31 dB. Donc la liaison est bien valide tout au long de l'orbite.
- Sur la liaison descendante avec le protocole AX.25, la marge minimale du système est de 1,92 dB et la marge maximale du système est de 14,87 dB. Donc, avec la contrainte minimale de bilans de liaison de 6 dB, la durée totale d'accès est réduite de 99,154 minutes à 30,63 minutes.
- Sur la liaison montante avec le protocole D-STAR, le système a une marge minimale de 17 dB et une marge maximale de 29,95 dB. La liaison est valide en continu tout au long de l'orbite.
- Sur la liaison descendante avec le protocole D-STAR, la marge minimale du système est de 8,56 dB et la marge maximale du système est de 21,51 dB. La liaison est valide en continu sur toute l'orbite.
- Sur la liaison descendante sur le canal de la balise, la marge minimale du système est de 19,98 dB et la marge maximale du système est de 32,93 dB. La liaison est valide en continu tout au long de l'orbite.

IV.6 Conclusion

Dans ce chapitre, à travers des simulations réalisées sous STK, nous avons démontré des éléments de mécanique orbitale ; obtenu des constellations optimales de satellites, tout d'abord pour une couverture terrestre globale continue, puis pour une couverture sur une zone spécifique délimitée entre deux emplacement donnés, pour une orbite terrestre basse ; enfin, nous avons calculé les bilans de liaison entre un nanosatellite KAMPUCH-1 et une station terrestre localisée à Liège, en Belgique. Il a été vérifié que :

- Plus l'orbite est de petite taille, plus importantes sont la variation de ω ($d\omega$) et la variation de R.A.A.N ($d\Omega$), et plus courte est la durée de visibilité, ce qui entraîne donc un plus grand nombre de satellites total requis pour une constellation en couverture globale continue de la Terre,.
- L'orbite VLEO elliptique d'inclinaison à 40° ne permet pas une constellation en couverture globale continue de la Terre.

Conclusion

Dans ce mémoire, un certain nombre d'aspects liés aux systèmes nanosatellites ont été abordés et étudiés, avec un découpage du travail en trois parties principales : une partie bibliographique, une partie théorique, et une partie réalisation et simulation.

Dans la partie bibliographique, nous nous sommes attachés à présenter un aperçu sommaire et synthétique de l'historique des nanosatellites, de l'état de l'art de leur développement, de leur architecture système et de leurs applications scientifiques et commerciales, pour tenter finalement de faire ressortir leurs nombreux avantages qui vont certainement influencer les nouvelles stratégies de développement spatial dans les années à venir. La recherche combinée du faible coût et d'une miniaturisation toujours plus avancée laisse pressentir que des changements dans l'aventure spatiale se dessinent, ou seront nécessaires pour faire face au contexte d'une concurrence internationale très vive, surtout face à la montée en puissance des acteurs spatiaux asiatiques, contexte auquel s'ajoutent des conditions économiques moroses.

A travers la partie théorique, l'idée maîtresse a été de proposer une étude rapide des principaux éléments de conception d'un système nanosatellitaire, en partant de la définition de la mission, puis en déterminant l'architecture globale du système (segment spatial, segment terrestre, environnement spatial, couche physique et couche liaison), pour finalement insister davantage sur des éléments classiques de mécanique orbitale, sur l'optimisation des constellations de satellites, et sur le calcul des bilans de liaison. Nous avons ainsi noté, entre autres, l'effet du choix de l'orbite, des bandes de fréquences et des types de modulation sur la qualité des liens de communication. Notre travail a été un survol bien rapide ; des problématiques très pointues à identifier resteraient à être formulées et résolues et pourraient faire l'objet de travaux de recherche doctorale futurs.

Dans un troisième et dernier volet, nous avons effectué quelques simulations, notamment en utilisant le logiciel STK doté de très nombreuses et intéressantes fonctionnalités. Ce logiciel a été exploité surtout pour des analyses orbitographiques, pour la détermination de constellations nanosatellitaires et pour le calcul de bilans de liaison. Des scénarii de simulation ont donc été mis en œuvre dans le but de vérifier les résultats obtenus dans la partie théorique.

L'étude du système nanosatellitaire fictif que nous avons baptisé KAMPUCH-1 réalisée dans ce mémoire a été personnellement difficile pour nous, et a demandé bien des labeurs, mais le sujet très intéressant, à l'intersection de diverses disciplines des sciences de l'ingénieur, en valait la peine. Seul l'avenir confirmera si le nanosatellite représente un meilleur choix technologique et économique que les satellites traditionnels parce qu'il est « plus rapide, plus petit, meilleur et moins cher », mais j'ai eu le plaisir de contribuer à l'étude de cette problématique. Maintenant qu'il est confirmé que mon pays, le Cambodge, aura son premier satellite de communications en 2013, je souhaite que les nanosatellites soient une technologie qui fasse son chemin dans les futures industries et politiques spatiales cambodgiennes qui ne manqueront pas de se développer dans un proche avenir.

REFERENCES BIBLIOGRAPHIQUES

- [1] MARAL, Gérard; BOUSQUET, Michel. Satellite Communications Systems Systems, Techniques and Technology, 5^e édition. New York: John Wiley & Sons Ltd, 2009.
- [2] ITU-R Study Group 4 (SG 4). *Handbook on Satellite Communications (HSC)*, 3^e édition. Genève, 1995.
- [3] LARSON, Wiley J.; WERTZ, James R. Space Mission Analysis and Design, 3^e édition. Californie: Microcosm Press, 2005.
- [4] DENIS, A.; PISANE, J. *OUFTI-1 Phase A: Mission definition, Space and ground systems description.* Université de Liège, septembre 2009.
- [5] CURTIS, Howard D., "Orbital Mechanics for Engineering Students", 2^e édition, Butterworth-Heinemann / Elsevier, 2010, 740 pages.
- [6] "Air University Space Primer", Air University, Maxwell AFB, AL, USA, août 2003.
- [7] BEECH, William A.; NIELSEN, Douglas E.; TAYLOR, Jack. AX.25 Link Access Protocol for Amateur Packet Radio, version 2.2. American Radio Relay League, Inc, 1993.
- [8] CROSSET, Nicolas. *Implémentation du relais D-STAR à bord du nanosatellite OUFTI-1*. Université de Liège, 28 juin 2010.
- [9] Innovative Solutions In Space. <u>http://www.isispace.nl/</u>.
- [10] A Brief Chronology of Amateur Satellites. <u>http://www.amsat.org/amsat-new/satellites/history.php</u>.
- [11] BURLACU, Maria-Mihaela; LORENZ, Pascal. A survey of small satellites domain: challenges, applications and communications key issues. 09/24/2010. <u>http://icast-magazine.org/2010/09/survey-small-satellites-domain-challenges-applications-and-communications-key-issues</u>.

ANNEXES

Annex I History of nanosatellites

Year	1961	2000	2	003
Name	OSCAR	ASU-OSCAR 37 (ASUSAT)	Cubesat-OSCAR 55	Quakesat
Date	12 December, 1961	27 January, 2000	30 June, 2003	June 30, 2003 on Rockot
Mass	4.5 kg	6 kg	1 kg	5 kg
Size	?	?	10 x 10 x 10 cm	10×10×32 cm
Types of orbit	VLEO Apogee:431.00 km Perigee:245.30 km	LEO Apogee: 799.00 km Perigee: 746.30 km	LEO Apogee: 831.00 km Perigee: 816.39 km	LEO Apogee: 837.9 km Perigee: 824.1km
Inclination	81.14°	100.19°	98.72°	98.72°
Period [minutes]	91.30	100.30	101.37	101.53
Launch vehicle	?	Minotaur-1	Dnepr	Rokot/Briz-KM
Launch location	Vandenberg Air Force Base, California, in United States	Vandenberg Air Force Base, California, in United States	Baikonur Cosmodrome, Kazakhstan	Plesetsk Cosmodrome, Arkhangelsk Oblast
Project/organization	OSCAR	Arizona State University	Tokyo Institute of Technology Matunaga LSS	Stanford University
Nation/Country	USA	USA	Japan	USA
Frequency band	VHF (Downlink 144.9830 MHz)	UHF?	UHF (Downlink 437.4000 MHz AFSK 1200 BPS)	UHF (436.675MHz 9600 bps FSK)
Application	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	Earth observation (Earthquake detection)
Image				

Year	20	003	2005	2006
Name	CubeSat-OSCAR 57 (CubeSat XI-IV)	RS-22	CubeSat-OSCAR 58 (Cubesat XI-V)	GeneSat-1
Date	30 June, 2003	27 September, 2003	27 October, 2005	16 December, 2006
Mass	1 kg	1 kg?	1 kg	4.500 kg
Size	10 x 10 x 10 cm	10 x 10 x 10 cm?	10 x 10 x 10 cm	10cm x 10cm x 30cm
Types of orbit	LEO Apogee: 832.00 km Perigee: 817.00 km	LEO Apogee: 693.00 km Perigee: 675.00 km	LEO Apogee: 709.00 km Perigee: 682.00 km	VLEO Apogee: 370.00 km Perigee: 368.00 km
Inclination	98.72 °	98.10°	98.18°	40.02°
Period [minutes]	101.39	98.44	98.68	91.93
Launch vehicle	Dnepr	Dnepr	Cosmos	Minotaur-1
Launch location	Baikonur Cosmodrome, Kazakhstan	Baikonur Cosmodrome, Kazakhstan	Plesetsk MSC (Multi Space Camera)	NASA Wallops Flight Facility, Mid-Atlantic Regional Spaceport (MARS)
Project/organization	University of Tokyo	Mozhaisky Military Space University	University of Tokyo	National Aeronautics and Space Administration (NASA)
Nation/Country	Japan	Russia	Japan	USA
Frequency band	UHF (Downlink 437.4900 MHz AFSK 1200 BPS)	UHF (Downlink 435.3520 MHz)	UHF (Downlink 437.3450 MHz AFSK 1200 BPS)	UHF (Downlink 437.0750 MHz AFSK 1200 BPS)
Application	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)
Image				

Year	2007		2008	
Name	CAPE-1	Delfi OSCAR-64 (Delfi-C3)	Cubesat Oscar-65 (Cute-1.7 + APD II)	Cubesat Oscar - 66 (SEEDS II)
Date	2007-04-17	28 April, 2008	28 April, 2008	28 April, 2008
Mass	?	2.2 kg	3 kg	1 kg
Size	CubeSat (1U)	10cm x 10cm x 34cm	20cmx15cmx10cm	10 x 10 x 10 cm
Types of orbit	LEO	LEO Apogee: 642.10 km Perigee: 621.60 km	LEO Apogee: 641.90 km Perigee: 622.30 km	LEO Apogee: 642.90 km Perigee: 621.80 km
Inclination	?	98.00°	98.00°	98.00 °
Period [minutes]	?	97.35	97.36	97.36
Launch vehicle	Dnepr	PSLV	PSLV	PSLV
Launch location	Baikonur Cosmodrome, Kazakhstan	Satish Dawan Space Center, India	Satish Dawan Space Center, India	Satish Dawan Space Center, India
Project/organization	University of Louisiana at Lafayette (Students)	Delft University of Technology	Tokyo Institute of Technology	Nihon University
Nation/Country	?	Netherlands	Japan	Japan
Frequency band	?	VHF (Downlink 145.8700 MHz BPSK 1200 BPS)	UHF (437.4750 MHz GMSK 9600 BPS)	UHF (Downlink 437.4850 MHz FM)
Application	Technology Demonstration	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)
Image	?			

Year	2008		2009			
Name	COMPASS-1	PRISM	KKS-1	STARS		
Date	28 April, 2008	23 January, 2009	23 January, 2009	23 January, 2009		
Mass	1 kg	8 kg	3 kg	8 kg		
Size	1U CubeSat	19cm x 19cm x 30cm	15cm x 15cm x 15cm	16cm x 16cm x 16cm		
Types of orbit	LEO Apogee: 642.30 km Perigee: 621.50 km	LEO Apogee: 670.00 km Perigee: 660.00 km	LEO Apogee: 670.00 km Perigee: 660.00 km	LEO Apogee: 670.00 km Perigee: 660.00 km		
Inclination	98.00°	98.03°	98.00 °	98.00°		
Period [minutes]	97.35	98.04	98.04	98.04		
Launch vehicle	PSLV	H-IIA F15	H-IIA F15	H-IIA F15		
Launch location	Satish Dawan Space Center, India	Tanegashima Space Center, Tanegashima	Tanegashima Space Center, Tanegashima	Tanegashima Space Center, Tanegashima		
Project/organization	Aachen University of Applied Sciences	Intelligent Space Systems Laboratory (ISSL) of University of Tokyo	Tokyo Metropolitan College of Industrial Technology	Kagawa University		
Nation/Country	Germany	Japan	Japan	Japan		
Frequency band	UHF (Downlink 437.4050 MHz AFSK 1200 BPS)	UHF (Downlink 437.4250 MHz AFSK 1200 BPS)	UHF (Downlink 437.4450 MHz AX.25)	UHF (Downlink 437.4850 MHz AX.25)		
Application	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)		
Image		0000	?			
Year	2009					
----------------------	--	--	--	---	--	--
Name	SwissCube	ITUpSAT1	UWE-2	BEESAT		
Date	23 September, 2009	23 September, 2009	23 September, 2009	23 September, 2009		
Mass	1 kg	1 kg	1 kg	1 kg		
Size	10cm cube	10cm cube	10cm cube	10cm cube		
Types of orbit	LEO Apogee: 752.00 km Perigee: 726.00 km					
Inclination	98.28°	98.29°	98.30°	98.30°		
Period [minutes]	99.59	99.59	99.59	99.59		
Launch vehicle	PSLV-C14	PSLV-C14	PSLV-C14	PSLV-C14		
Launch location	Satish Dawan Space Center, India					
Project/organization	Ecole Polytechnique Federale De Lausanne	Istanbul Teknik Universitesi	Universitat Wurzburg	Technische Universitat Berlin		
Nation/Country	Switzerland	Turkey	Germany	Germany		
Frequency band	UHF (Downlink 437.5050 MHz FSK 1200 BPS)	UHF (Downlink 437.3250 MHz)	UHF (Downlink 437.3850 MHz FSK 9600 BPS)	UHF (Downlink 436.0000 MHz GMSK 9600 BPS)		
Application	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)		
Image				Bersat Engineer og gunne bagt		

Year		2010	
Name	RAX	O/OREOS	
Date	20 November, 2010	20 November, 2010	
Mass	2.8 kg	5.5 kg	
Size	10cmx10cmx34cm	10cmx10cmx34cm	
Types of orbit	LEO Apogee: 650.00 km Perigee: 650.00 km	LEO Apogee: 650.00 km Perigee: 650.00 km	
Inclination	72.00°	72.00°	
Period [minutes]	97.73	97.73	
Launch vehicle	Minotaur IV	Minotaur IV	
Launch location	Kodiak, Alaska, USA	Kodiak, Alaska, USA	
Project/organization	University of Michigan and SRI International	NASA Ames and Santa Clara University	
Nation/Country	USA	USA	
Frequency band	UHF (Downlink 437.5050 MHz GMSK 9600 BPS)	UHF (Downlink 437.3050 MHz AX.25 1200 BPS)	
Application	Telecommunications (Amateur radio)	Telecommunications (Amateur radio)	
Image			

Table A.I.1 : History of nanosatellites

A.II.1 <u>Frame structure</u>

A. AX.25 protocol

Each frame is made up of several smaller groups, called fields. The AX.25's frame structure is shown in Figure A.II.1. Note that the first bit to be transmitted is on the left side.

	F	lag	Addre	ess	Contro	1 Inf	io l	FCS	Flag	
	0111	11110	112/224	Bits	8/16 Bi	ts N*8	8 Bits 16 Bits 011		0111111	0
			¢.	Info	rmation	n frame co	onstru	ction		
Fla	g	Ado	lress	Con	itrol	PID		Info	FCS	Flag
	110	112/2	24 Bits	8/16	Bits	8 Bits	N*	8 Bits	16 Bits	01111110

- *Flag field*: is a frame delimiter for synchronization, one octet long "01111110", and occurs at both the beginning and the end of each frame.
- *Address field*: identifies both the source of the frame and its destination in order to route the packet. It can contain 2 to 10 ham calls.
- *Control field*: contains some control information such as the kind of packet, the number of the packet, and much more.
- *Protocol ID (PID) field*: appears in the information frames I (Information) and UI (Unnumbered information) only for identifying which kind of layer 3 protocol used.
- Information field: contains data to be sent (up to 256 bytes)
- Frame Check Sequence (FCS) field: is a code (16 bits) inserted after data to detect possible transmission errors.

B. <u>D-STAR protocol</u>

The DV mode's frame structure of D-STAR is shown in Figure A.II.2.

• Synchronization

There are 2 kinds of synchronization fields (or patterns) at the beginning of the frame:

- The bit synchronization pattern (64-bit long in the protocol). For GMSK modulation, this pattern consists in 16 repetitions of the four bits 1010 placed at the beginning of the frame. For QPSK modulation, these four bits are 1001.
- The frame synchronization pattern (15-bit long in the protocol, 111011001010000).

Radio header

The radio header, or simply called header, is 328 bits long (before coding) and contains some information about the frame. The successive fields are:

- Three 1-byte flags that give some information about the kind of communication (flag 1) or are left available for further development of the protocol (flags 2 and 3)
- The ID field (36 bytes) which is used to identify of the sender and destination. It consists of a series of the destination repeater call sign, the departure repeater call sign, the companion call sign, the own call sign 1, and the own call sign 2 used for additional information about the transmitter.
- P_FCS (Frame Check Sequence) which is an error-detection code (2 bytes). It permits one to detect the presence of some type of errors but not to correct them.

Data

The data part of the D-STAR frame consists in an alternance of voice frame (72 bits) and data frame (24 bits), always starting with a voice frame.

End-of-frame pattern

The end-of-frame pattern is composed of 32 synchronization bits 1010 followed by the beginning-of-frame pattern inverted: 000100110101111.

C. Beacon

The Beacon's frame structure is illustrated in the Figure A.II.3.

Γ	HI HI DE	OUFTI1	SW	AA BB PP	YY	ZZ]	
	Figure A II 2 · Reacon's frame structure							
Figure A.II.3 : Beacon's frame structure								

HI HI DE and ZZ: Synchronization OUFTI1: Identification SW (Status Word): 8 bits of status AA BB ... PP: 16 value of 8 bits YY: Checksum

A.II.2 Formulas of orbital mechanics

Input parameters						
Variable inputs		Fixed inputs				
Name : Name of orbit type		Earth gravity constant	u =398600,607	$[km^{3/s^{2}}]$		
f_up : Frequency uplink	[MHz]	Earth Radius	Re = 6378,136	[km]		
f_down : Frequency downlink	[MHz]	Second zonal harmonic of the Earth planet	J2 = 1,08263×10^-3	[Unit less]		
elev : Elevation angle	[degrees]	Radians to degrees	rad2deg = 180/pi	[Unit less]		
ha : Height of apogee	[km]	Degrees to radians	deg2rad = pi/180	[Unit less]		
hp : Height of perigee	[km]	Seconds to minutes	sec2mn = 1/60	[Unit less]		
Relative spacing between satellites adjacent planes F ($0 \le F \le P-1$)	in [Unit less]					
Inclination (i)	[degrees]]				
Argument of perigee (w)	[degrees]					
R.A.A.N: Right Ascension of the	[dogroos]					
Ascending node (o)	[degrees]					
True anomaly initial (v)	[degrees]					
Calculation parameters						
1/ Orbital Parameters						
Semimajor axis (a)	$a = (ha+hp+2 \times Re$	2)/2		[km]		
Eccentricity (e)	e = [(ha+Re)-(hp-Re)]	+Re)]/[(ha+Re)+(hp+Re)]		[Unit less]		
Orbit period (T)	$T = (2 \times pi) \times a \times si$	qrt(a/u)×sec2mn		[minutes]		
Initial Value of eccentric (E)	$E_{ini} = 2 \times atan(sc)$	qrt((1-e)/(1+e))×tan(v/2×deg	g2rad));	[rad]		
Mean anomaly (M)	Mean anomaly (M) $M_{ini} = E_{ini} \cdot e^{i \pi i}$					
	$dw = -[3/2 \times (sqrt($	u)×J2×Re^2)/((1-		[rad/s]		
Time rate of change of w (dw)	$e^{2}^{2}(a^{7}(7/2))$	$]\times(5/2\times(\sin(i\times \deg 2rad))^2)$	-2)	[lau/s]		
$dw_DegPerDay = dw \times rad2deg \times 3600 \times 24$				[deg/day]		
	$do = -[3/2 \times (sqrt(u))]$	u)×J2×Re^2)/((1-		[rad/s]		
Time variation of R.A.A.N (do)	$e^{2}^{2}(a^{7}(7/2))$)]×cos(i×deg2rad)				
$do_DegPerDay = do \times rad2deg \times 3600 \times 24;$						
	$X=-0.098919152 \times (1-e^{2})^{2} \times (a/Re)^{3}.5;$					
	if -1<=X && X<	=1				
	i_SunSynchro	$1_SunSynchro = acos(X) \times rad2deg;$				
Sun-synchronous inclination	fprintf('\n Sun-	[degrees]				
~ 29	1_SunSynchro);	[9]				
	else					
	fprintf(\n Sun-					
	end;					
Minimum orbit radius	\mathbf{U}	rbit radius		[]]		
Maximum orbit radius	$r_min = np+Re$			[KIII]		
Maximum of old fadius	$I_{\text{max}} - \text{ma+Re}$					
2/ Slant Panga and Frag Space Dath	I_IIIeaii – a					
2/ Stant Range and Free Space Faul	LUSS	lant yanga				
Slantrongo	$S = aart(r \land 2 P a \land 2$	$(ant range) \times (and (and and and and and and and and and and $	avgin(alouvdag?rad)	[lam]		
Statt tange	S = Sqrt(1/2-Re/2)	$2^{(cos(elev^deg21au))}$ 2)-r	$rad))^{2}$			
Minimum slant range	Re×sin(elev×deg2	$\frac{1111}{2rad} = \frac{2}{(\cos(e)ev \wedge deg2)}$	Tau)) 2)-	[km]		
Maximum slant range	S_max = sqrt(r_n Re×sin(elev×deg2	nax^2-Re^2×(cos(elev×deg 2rad)	2rad))^2)-	[km]		
Mean slant range	$S_mean = sqrt(r_m)$	mean^2-Re^2×(cos(elev×de	eg2rad))^2)-	[km]		
	Re×sin(elev×deg2	2rad)		الدينيا		
	Prop	agation delay				
Propagation delay	Propagation_dela	$y = S \times 10^{3}/c$		[sec]		
Minimum Propagation delay	Propagation_dela	$y_{min} = S_{min} \times 10^{3/c}$		[sec]		
Maximum Propagation delay	Propagation_dela	$y_max = S_max \times 10^3/c$		[sec]		

Mean Propagation delay Pro	$pagation_delay_mean = S_mean \times 10^3/c$	[sec]					
Wavelength							
Wavelength uplink	Lambda_up = $c/(f_up \times 10^{6})$	[m]					
Wavelength Downlink	Lambda_down = $c/(f_down \times 10^{6})$	[m]					
	Free Space (FS) path loss						
	Uplink						
Uplink FS path loss	L_up=22+20×log10((S×1000)/Lambda_up)	[dB]					
Minimum FS path loss	L_min_up=22+20×log10((S_min×1000)/Lambda_up)	[dB]					
Maximum FS path loss	L_max_up=22+20×log10((S_max×1000)/Lambda_up)	[dB]					
Mean FS path loss	L_mean_up=22+20×log10((S_mean×1000)/Lambda_up)	[dB]					
Downlink							
Downlink FS path loss	L_down=22+20×log10((S×1000)/Lambda_down)	[dB]					
Minimum FS path loss	L_min_down=22+20×log10((S_min×1000)/Lambda_down)	[dB]					
Maximum FS path loss	L_max_down=22+20×log10((S_max×1000)/Lambda_down)	[dB]					
Mean FS path loss	L_mean_down=22+20×log10((S_mean×1000)/Lambda_down)	[dB]					
3/ Zone Coverage, Duration of Visibilit	y and Number of Satellite Required for Continuous Coverage						
	Nadir angle						
Nadır angle	$alpha = asin(Re/r \times cos(elev \times deg2rad)) \times rad2deg$	[degrees]					
Minimum nadir angle	$alpha_min = asin(Re/r_max \times cos(elev \times deg2rad)) \times rad2deg$	[degrees]					
Maximum nadir angle	$alpha_max = asin(Re/r_min \times cos(elev \times deg2rad)) \times rad2deg$	[degrees]					
Mean nadır angle	$alpha_mean = asin(Re/r_mean \times cos(elev \times deg2rad)) \times rad2deg$	[degrees]					
	Central angle	F 1 3					
Central angle	beta = acos((Re/r×cos(elev×deg2rad)))×rad2deg-elev	[degrees]					
Minimum central angle	$beta_min = acos((Re/r_min \times cos(elev \times deg2rad))) \times rad2deg-elev$	[degrees]					
Maximum central angle	$beta_max = acos((Re/r_max \times cos(elev \times deg2rad))) \times rad2deg-elev$	[degrees]					
Mean central angle beta_mean = acos((Re/r_mean×cos(elev×deg2rad)))×rad2deg-elev [degrees]							
Eastaniat log oth	Footprint length	[1]					
Minimum footarint longth	FPL = 2×Re×beta×deg2rad						
Maximum factorint length	FPL_min = 2×Re×beta_min×deg2rad	[KIII]					
Maan footprint length	FPL_max = 2×Re×beta_max×deg2rad	[KIII]					
	FPL_mean = 2×Re×beta_mean×deg2rad	[KIII]					
Footprint area	$FDA = 2 \times pi \times Pa^2 \times (1 \cos(bata \times deg2rad))$	[km^2]					
Minimum footprint area	$FPA = 2 \times pi \times Re^2 \times (1 \cos(0 \cos \alpha \cos \alpha \cos \alpha))$ FPA min = 2 \times pi \text{A} = 2 \t	$[km^2]$					
Maximum footprint area	$FPA max = 2 \times pi \times Re^{2} \times (1 - \cos(beta max \times deg2rad))$	[km^2]					
Mean footprint area	$FPA mean = 2 \times ni \times Re^{2} \times (1 - \cos(beta mean \times deg2tad))$	[km^2]					
	Velocity of the satellite						
Velocity of satellite	$V = \operatorname{sort}(u \times 10^{6} \times (2/r_{-}1/a))$	[m/s]					
Minimum velocity of satellite	$V_{\text{min}} = \text{sqrt}(u \times 10^{6} \text{s}(2/r_{\text{max}} - 1/a))$	[m/s]					
Maximum velocity of satellite	$V = sart(u \times 10^{-6} \times (2/r = min - 1/a))$	[m/s]					
Mean velocity of satellite	V mean = sqrt($u \times 10^{6} \times (2/r \text{ mean} - 1/a)$)	[m/s]					
	Duration of Visibility						
Duration of visibility	$t = FPL \times 10^{3}/V \times sec2mn$	[minutes]					
Minimum duration of visibility	t min = FPL min×10^3/V max×sec2mn	[minutes]					
Maximum duration of visibility	$t_{max} = FPL_{max} \times 10^{3}/V_{min} \times sec2mn$	[minutes]					
Mean duration of visibility	t mean = FPL mean× 10^{3} /V mean×sec2mn	[minutes]					
Number	of satellites required for continuous coverage						
Number of satellite required	N = ceil(T/t)	[Unit less]					
Minimum number of satellite required	$N_{min} = ceil(T/t_{max})$	[Unit less]					
Maximum number of satellite required	N_max = ceil(T/t_min)	[Unit less]					
Mean number of satellite required	$N_mean = ceil(T/t_mean)$	[Unit less]					
4/ Time of Flight (TOF) from perigee to	true anomaly initial						
Initial Value of eccentric (E)	$E = 2 \times atan(sqrt((1-e)/(1+e)) \times tan(v/2 \times deg2rad))$	[rad]					
Mean anomaly (M)	$M = E - e \times sin(E \times deg2rad)$	[rad]					
Time of Flight (TOF)	$ \begin{array}{c} \text{if E} >=0 \\ \text{TOF} = M \times T/(2 \times \text{pi}); \end{array} $	[minutes]					

	else	
	$TOF = T + (M \times T/(2 \times pi));$	
	end 5/ C	Constallation
	Walker Star constellation	onstenation
	Street width	
Street width	beta street = $acos(cos(beta \times deg2rad)/cos(pi/N))$	[rad]
Minimum street width	beta street min = $acos(cos(beta min×deg2rad)/cos(pi/N max))$	[rad]
	beta street min deg = beta street min×rad2deg	[degrees]
Maximum street width	beta street max = $acos(cos(beta max×deg2rad)/cos(pi/N min))$	[rad]
	beta street max deg = beta street max×rad2deg	[degrees]
Mean street width	beta_street_mean = acos(cos(beta_mean×deg2rad)/cos(pi/N_mean))	[rad]
	beta_street_mean_deg = beta_street_mean×rad2deg	[degrees]
if beta_street_min>beta_street	max	•
temp=beta_street_min; beta_street_min=beta_stree	t may.	
beta_street_max=temp;		
end		
	Street of coverage (SOC)	r 17
SOC	SOC_rad = 2×beta_street	[rad]
Minimum SOC	$SOC_{min} rad = 2 \times beta_{street_{min}}$	
Marine SOC	$SOC_{min} km = 2 \times Re \times beta_{street_min}$	[km]
Maximum SOC	SOC_max_rad = 2×beta_street_max	
Maar SOC	SOC_max_km = 2×ke×beta_street_max	[KM]
Mean SOC	SOC_mean_rad = 2×beta_street_mean	
Downondicular concretion dista	SOC_mean_km = 2*Re*beta_street_mean	<u>[Km]</u>
rerpendicular separation dista	$D_{\text{SD}} = \text{hoto} \text{ street} \times \text{rod}^2 \text{deg} + \text{hoto}$	SD
<u>D_SD</u> Minimum	$D_{SD} = beta_{street \wedge had 2} deg + beta_{street \min \times rad 2} deg + beta_{street \max \times rad 2} deg$	[degrees]
Maximum	D_{min} SD = beta_street_max/rad2deg + beta_max	[degrees]
Mean	D = max SD = beta = street = mean xrad2deg + beta = mean D = beta = street = mean xrad2deg + beta = mean	[degrees]
Perpendicular separation distan	ce between adjacent planes moving in the opposite direction. I	
D OD	D $OD = 2 \times beta street \times rad2 deg$	[degrees]
Minimum	$D \min OD = 2 \times beta \text{ street min} \times rad2deg$	[degrees]
Maximum	$D \max OD = 2 \times beta \text{ street } \max \times rad2deg$	[degrees]
Mean	D mean $OD = 2 \times beta$ street mean $\times rad2deg$	[degrees]
	Number of planes	[]
Number of planes	P = round([(180 - D OD)/(D SD)]+1)	[Unit less]
Minimum number of planes	P min = round([(180 - D max OD)/(D max SD)]+1)	[Unit less]
Maximum number of planes	$P_{max} = round([(180 - D_{min}OD)/(D_{min}SD)]+1)$	[Unit less]
Mean number of planes	$P_mean = round([(180 - D_mean_OD)/(D_mean_SD)]+1)$	[Unit less]
	Total number of satellite, TNOS	
Total number of satellite	$TNOS = N \times P$	[Unit less]
Minimum total number of satellite	$TNOS_min = N_min \times P_min$	[Unit less]
Maximum total number of satellite	$TNOS_max = N_max \times P_max$	[Unit less]
Mean total number of satellite	$TNOS_mean = N_mean \times P_mean$	[Unit less]
W	alker Delta constellation (i:TNOS/P/F)	
DU	Pattern Unit (PU)	[1]
PU Minimum DU	PU = 360/1NOS	
	$F \cup IIIIII = 300/ IINOS IIIIIIDL max = 260/TNOS max$	[degrees]
	$\frac{10 \text{ max} - 300/11005 \text{ max}}{\text{PL} \text{ max} - 360/TNOS \text{ max}}$	[degrees]
	Node spacing	[ucgrees]
Node spacing	NodeSpacing=PUX N	[degrees]
Minimum Node spacing	NodeSpacing min=PU min × N min	[degrees]
Maximum Node spacing	NodeSpacing max = PU max \times N max	[degrees]

Mean Node spacing	NodeSpacing_mean=PU_mean × N_mean	[degrees]			
In-plane spacing between satellite					
In-plane spacing between satellite	$IPS = PU \times P$	[degrees]			
Minimum	$IPS_min = PU_min \times P_min$	[degrees]			
Maximum	$IPS_max = PU_max \times P_max$	[degrees]			
Mean	$IPS_mean = PU_mean \times P_mean$	[degrees]			
Phase difference between adjacent planes					
Phase difference between adjacent planes	$APS = PU \times F$	[degrees]			
Minimum	$APS_min = PU_min \times F$	[degrees]			
Maximum	$APS_max = PU_max \times F$	[degrees]			
Mean	$APS_mean = PU_mean \times F$	[degrees]			

Table A.II.1 : Formulas of orbital mechanics

A.II.3 MATLAB code for orbital mechanics

<u>ي</u>_____ % Orbital Mechanics with MATLAB ۶_____ function [] = orbit prop (Name, ha, hp, i, elev, w, o, v, f up, f down, F) % Elliptical orbit: % LEO : orbit_prop('LEO', 1447, 354, 71, 5, 30, 45, 15, 435, 145, 1)
% VLEO : orbit_prop('VLEO', 370, 368, 40.02, 5, 30, 45, 15, 435, 145, 1) % MEO(Molnya): orbit_prop('MEO (Molnya)', 39105, 1250, 63.4, 5, 30, 45, 15, 435, 145, 1) % MEO(Tundra): orbit prop('MEO (Tundra)', 46340, 25231, 63.4, 5, 30, 45, 15, 435, 145, 1) % Circular orbit: orbit prop('LEO', 650, 650, 72, 5, 0, 45, 45, 435, 145, 1) % LEO : %%I.1%% >>> Variable inputs % Name, ha, hp, i are chosen to vary for comparison in our case. % Name : Name of orbit type % f_up : Frequency uplink [MHz] % f_down : Frequency downlink % elev : Elevation Angle [MH7] [degrees] % ha : Height of Apogee % hp : Height of Perigee [km] [km] % Relative spacing between satellites in adjacent planes F; % 0<= F <= P-1 [unit less]</pre> % i, w, o, and v: Obtain by satellite measurement system : Inclination 8 i [degrees] % W : Argument of Perigee [degrees] 8 O : R.A.A.N: Right Ascension of the Ascending node [degrees] % v : True anomaly initial [degrees] %%I.2%% >>> Fix inputs u = 398600.607; % Earth gravity constant % Earth Radius % Second zonal harmonic of the Earth planet % Speed of light [km^3/s^2] Re = 6378.136; [km] $J2 = 1.08263 \times 10^{-3};$ [unit less] c=299.8*10^6; [m/s] % Radians to degrees rad2deg = 180/pi; deg2rad = pi/180;% Degrees to radians sec2mn = 1/60;% Seconds to minutes % The Keplerian elements are: % a : semimajor axis [km] e : eccentricity
i : inclination
o : right ascension of the ascending node
w : argument of perigee
v : true anomaly [unit less] 00 [degrees] 8 [degrees] 8 8 [degrees] [degrees] 00

%%II.1%% >>> Orbital Parameters

% Input parameters: ha, hp, Re, i, o, w, v

```
a = (ha+hp+2*Re)/2; % a : Semimajor Axis [km]
e = [(ha+Re)-(hp+Re)]/[(ha+Re)+(hp+Re)]; % e : Eccentricity [unit less]
T = (2*pi) * a* sqrt(a/u)*sec2mn; % T : Orbit period [minutes]
% Initial Value of eccentric (E) [rad]
E ini = 2*atan(sqrt((1-e)/(1+e))*tan(v/2*deg2rad));
% Mean anomaly (M) [rad]
M ini = E ini-e*sin(E ini);
% The time rate of change of the argument of perigee [rad/s]
dw = -[3/2*(sqrt(u)*J2*Re^{2})/((1-e^{2})^{2}*(a^{(7/2)}))]*(5/2*(sin(i*deq2rad))^{2}-2);
% The time rate of change of the argument of perigee [deg/day]
dw DegPerDay = dw*rad2deg*3600*24;
% dw DegPerDay = 19.92770307*1/(1-e^2)^2*(Re/a)^3.5*(1-1.25*(sin(i))^2)
% dw DegPerDay > 0, or 0^{\circ} \le 1 \le 63.4^{\circ} or 116.6^{\circ} \le 180^{\circ} : the perigee advances in the
direction of the motion of the satellite (hence, the name advance of perigee for this
phenomenon).
% dw DegPerDay < 0, or 63.4°<=i<116.6°
                                                  : the perigee regresses, moving
opposite to the direction of motion.
% dw_DegPerDay = 0 when J2=0, or i= 63.4° or i=116.6° : are the critical inclinations at
which the apse line does not move.
% The time variation of the right ascension o or the rate of drift [rad/s]
do = -[3/2*(sqrt(u)*J2*Re^2)/((1-e^2)^2*(a^(7/2)))]*cos(i*deg2rad);
% The time variation of the right ascension o or the rate of drift [deg/day]
do DegPerDay = do^*rad2deg^*3600^*24;
% do DegPerDay = -9.963851533*1/(1-e^2)^2*(Re/a)^3.5*cos(i)
% do_DegPerDay < 0, or 0°<=i<90°
                                       : Prograde orbits, the node line drifts
westward.
% do DegPerDay > 0, or 90°<i<=180°
                                      : Retrograde orbits, the node line drifts
eastward.
% do DegPerDay = 0 when J2=0, or i=90°
                                      : Polar orbits, the node line is stationary.
fprintf('\n The Orbit Properties of %s orbit are in the list below: \n\n', Name);
fprintf('\n------
  -----');
fprintf('\n \t\t\t\t\t ***** The Orbit Properties of %s orbit *****', Name);
fprintf('\n-----
         -----');
fprintf('\n------
                                          _____
fprintf('\n 1/ Orbital Parameters ');
                                       -----
fprintf('\n-----
         -----');
fprintf('\n Earth radius (Re) \t\t\t\t\t %.2f \t km', Re);
fprintf('\n Height of apogee (ha) \t\t\t\t %.2f \t km', ha);
fprintf('\n Height of perigee (hp) \t\t\t %.2f \t km', hp);
fprintf('\n Elevation angle (elev) \t\t\t %.2f \t\t degrees', elev);
fprintf('\n Inclination (i) \t\t\t\t\t %.2f \t\t degrees', i);
fprintf('\n R.A.A.N (o) \t\t\t\t\t\t %.2f \t\t degrees', o);
fprintf('\n Argument of perigee (w) \t\t\t %.2f \t degrees', w);
fprintf('\n True anomaly (v) \t\t\t\t\t %.2f \t\t degrees', v);
fprintf('\n Mean anomaly (M) \t\t\t\t %.2f \t\t degrees', radtodeg(M ini));
fprintf('\n Semimajor axis (a) \t\t\t\t %.2f \t km', a);
fprintf('\n Eccentricity (e) \t\t\t\t\t %e \t\t unit less', e);
fprintf('\n Orbit period (T) \t\t\t\t\t %.2f \t minutes', T);
fprintf('\n Time rate of change of w (dw) \t\t %.2f \t\t degrees/day', dw DegPerDay);
fprintf('\n Time variation of R.A.A.N (do) \t %.2f \t\t degrees/day', do DegPerDay);
```

```
% The sun-synchronous inclination [deq]
X=-0.098919152*(1-e^2)^2*(a/Re)^3.5;
if -1<=X && X<=1
   i SunSynchro = acos(X) *rad2deq;
   fprintf('\n Sun-synchronous inclination \t\t %.2f \t\t degrees', i SunSynchro);
else
   fprintf('\n Sun-synchronous inclination \t\t None');
end:
fprintf('\n-----
-----');
% return;
           %%II.2%% >>> Slant Range and Free Space Path Loss
% We calculate the Slant Range and Free Space Path Loss for r min, r max and r mean by
assuming the elevation angle 5 degrees.
% Input parameters: ha, hp, Re, elev, f up, f down
if ha==hp
 H=ha;
                                         % Orbit altitude [km]
 r = H + Re;
                                         % orbit radius [km]
 S = sqrt(r^2-Re^2*(cos(elev*deg2rad))^2)-Re*sin(elev*deg2rad);
                                                              % Slant range [km]
 Propagation_delay = S*10^3/c; % [sec]
Lambda_up = c/(f_up*10^6); % Wavelenght uplink [m]
Lambda_down = c/(f_down*10^6); % Wavelenght downlink [m]
L_up=22+20*log10((S*1000)/Lambda_up); % Minimum Free Space Path Loss of uplink [dB]
 L down=22+20*log10((S*1000)/Lambda down); % Minimum Free Space Path Loss of uplink [dB]
   fprintf('\n 2/ Slant Range and Free Space Path Loss ');
   fprintf('\n-----
                                                     _____
     -----');
   fprintf('\n Orbit altitude \t\t\t\t\t %.2f \t km ', H);
   fprintf('\n Orbit radius \t\t\t\t\t\t\t %.2f \t km ', r);
   fprintf('\n Slant range \t\t\t\t\t\t %.2f \t km ', S);
   fprintf('\n Propagation delay \t\t\t\t %.2f \t\t sec ', Propagation_delay);
   fprintf('\n \t\t\t\t Uplink ');
   fprintf('\n \t\t\t\t\t ----- ');
   fprintf('\n Frequency uplink \t\t\t\t\t %.2f \t MHz', f up);
   fprintf('\n Wavelength uplink \t\t\t\t\t %.2f \t\t m', Lambda up);
   fprintf('\n Free Space (FS) path loss \t\t\t %.2f \t dB ', L up);
   fprintf('\n \t\t\t\t Downlink ');
   fprintf('\n \t\t\t\t\t ----- ');
   fprintf('\n Frequency downlink \t\t\t\t %.2f \t MHz', f down);
   fprintf('\n Wavelength downlink \t\t\t %.2f \t\t m', Lambda down);
   fprintf('\n Free Space (FS) path loss \t\t\t %.2f \t dB ', L down);
   fprintf('\n-----
        -----');
else
   H min = hp;
                                    % Minimum orbit altitude [km]
   H_max = ha;
                                   % Maximum orbit altitude [km]
   H = (ha+hp)/2;
                                    % Mean orbit altitude [km]
   r min = hp+Re;
                                    % Minimum orbit radius [km]
                                     % Maximum orbit radius [km]
   r max = ha+Re;
                                    % Mean orbit radius [km]
   r mean = a;
   % Elevation angle assume to be 5 degrees anywhere of satellite orbiting the Earth
```

```
S min = sqrt(r min<sup>2</sup>-Re<sup>2</sup>*(cos(elev*deg2rad))<sup>2</sup>)-Re*sin(elev*deg2rad);
% Minimum slant range [km]
   S max = sqrt(r max^2-Re^2*(cos(elev*deg2rad))^2)-Re*sin(elev*deg2rad);
% Maximum slant range [km]
   S mean = sqrt(r mean^2-Re^2*(cos(elev*deg2rad))^2)-Re*sin(elev*deg2rad);
% Mean slant range [km]
   Propagation delay min = S min*10^3/c; % [sec]
   Propagation delay max = S max*10^3/c; % [sec]
   Propagation delay mean = S mean*10^3/c; % [sec]
   Lambda_up = c/(f_up*10^6); % Wavelenght uplink
Lambda_down = c/(f_down*10^6); % Wavelenght_downlink
   Lambda up = c/(f up*10^6);
                                 % Wavelenght uplink
                                                      [m]
                                                       [m]
   L min up=22+20*log10((S min*1000)/Lambda up);
                                                  % Minimum Free Space Path
Loss of uplink [dB]
   L max up=22+20*log10((S max*1000)/Lambda up);
                                                  % Minimum Free Space Path
Loss of uplink [dB]
   L mean up=22+20*log10((S_mean*1000)/Lambda_up);
                                                  % Mean Free Space Path Loss
          [dB]
of uplink
   L min down=22+20*log10((S min*1000)/Lambda down);
                                                  % Minimum Free Space Path
Loss of uplink [dB]
   L max down=22+20*log10((S max*1000)/Lambda down);
                                                  % Minimum Free Space Path
Loss of uplink [dB]
   L mean down=22+20*log10((S mean*1000)/Lambda down);
                                                  % Mean Free Space Path Loss
of uplink
         [dB]
   fprintf('\n 2/ Slant Range and Free Space Path Loss ');
   fprintf('\n------
   -----');
   fprintf('\n Orbit altitude \t\t\t\t Minimum orbit altitude \t Maximum orbit
altitude \t Mean orbit altitude');
   H_min, H_max, H_mean);
   fprintf('\n Orbit radius \t\t\t\t\t\t\t Minimum orbit radius \t\t Maximum orbit radius
\t\t Mean orbit radius');
   fprintf('\n \t\t\t\t\t\t\t\t\t\t\t\t\t\t\%.2f \t km \t\t\t %.2f \t km \t\t\t %.2f \t km',
r min, r max, r mean);
   fprintf('\n Slant range \t\t\t\t\t Minimum slant range \t\t Maximum slant range
\t\t Mean slant range');
   S min, S max, S mean);
   fprintf('\n propagation delay \t\t\t\t Minimum propagation delay \t Maximum
propagation delay \t Mean propagation delay');
   fprintf('\n \t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\ %.6f \t sec \t\t\t\t %.6f \t sec \t\t\t\t\t %.6f \t
sec', Propagation delay min, Propagation delay max, Propagation delay mean);
   fprintf('\n Frequency uplink \t\t\t\t\t %.2f \t MHz', f up);
   fprintf('\n Wavelength uplink \t\t\t\t %.2f \t\t m', Lambda up);
   fprintf('\n Free Space (FS) path loss \t\t Minimum FS path loss \t\t Maximum FS
path loss \t\t Mean FS path loss');
   L_min_up, L_max_up, L_mean_up);
   fprintf('\n Frequency downlink \t\t\t %.2f \t MHz', f down);
   fprintf('\n Wavelength downlink \t\t\t\ %.2f \t\t m', Lambda_down);
   fprintf('\n Free Space (FS) path loss \t\t\t Minimum FS path loss \t\t Maximum FS
path loss \t\t Mean FS path loss');
```

fprintf('\n------');

end

% return;

%%II.3%% >>> Zone Coverage and Duration of Visibility

% Input parameters: >>> r_min, r_max, r_mean, a (From II.2 and II.1 get by ha, hp, Re); Re; elev % The zone coverage and duration of visibility depends on two parameters: % orbit altitude and elevation angle. % - The zone coverage is estimated at the minimum altitude, maximum altitude, and mean altitude with the % elevation angle 5 degrees. % - The duration of visibility is estimated for a constant velocity of % satellite with the elevation angle 5 degrees during orbiting.

if ha==hp

```
% Nadir Angle [degrees]
   alpha = asin(Re/r*cos(elev*deg2rad))*rad2deg;
   % Central Angle [degrees]
   beta = acos((Re/r*cos(elev*deg2rad)))*rad2deg-elev;
   % Footprint Length [km]
   FPL = 2*Re*beta*deg2rad;
   % Footprint Area [km^2]
   FPA = 2*pi*Re^{2}(1-\cos(beta*deg2rad));
   % Velocity of the Satellite [m/s]
   V = sqrt(u*10^{6}*(2/r-1/a));
   % Duration of Visibility [minutes]
   t = FPL*10^3/V*sec2mn;
   fprintf('\n 3/ Zone Coverage and Duration of Visibility ');
   fprintf('\n-----
-----');
   fprintf('\n Orbit radius \t\t\t\t\t\t\t %.2f \t km ', r);
   fprintf('\n Nadir angle \t\t\t\t\t %.2f \t\t degrees ', alpha);
   fprintf('\n Central angle \t\t\t\t\t\t\t %.2f \t\t degrees ', beta);
   fprintf('\n Footprint length \t\t\t\t\t %.2f \t km ', FPL);
   fprintf('\n Footprint area \t\t\t\t\t %.2f km^2 ', FPA);
   fprintf('\n Velocity of the satellite \t\t\t %.2f \t m/s ', V);
   fprintf('\n Duration of Visibility \t\t\ %.2f \t\t minutes ', t);
   % The number of satellites required for the area specific coverage in one repeat
cycle period T
   N = ceil(T/t);
   fprintf('\n Orbit period (T) \t\t\t\t\t %.2f \t\t minutes', T);
   fprintf('\n\n Number of satellites required');
   fprintf('\n for continuous coverage \t\t\t %d', N);
```

fprintf('\n-----');

```
else
```

```
% Nadir Angle [degrees]
   alpha max = asin(Re/r min*cos(elev*deg2rad))*rad2deg;
% (Maximum) Nadir angle of minimum altitude [degrees]
   alpha min = asin(Re/r max*cos(elev*deg2rad))*rad2deg;
% (Minimum) Nadir angle of maximum altitude [degrees]
   alpha_mean = asin(Re/r mean*cos(elev*deg2rad))*rad2deg;
% Mean nadir angle of mean altitude
                                                      [degrees]
   % Central Angle [degrees]
   beta min = acos((Re/r min*cos(elev*deg2rad)))*rad2deg-elev;
% Minimum central angle [degrees]
   beta_max = acos((Re/r_max*cos(elev*deg2rad)))*rad2deg-elev;
% Maximum central angle [degrees]
   beta mean = acos((Re/r mean*cos(elev*deg2rad)))*rad2deg-elev;
% Mean central angle
                              [degrees]
   % Footprint Length [km]
   FPL_min = 2*Re*beta_min*deg2rad;% Minimum footprint length[km]FPL_max = 2*Re*beta_max*deg2rad;% Maximum footprint length[km]FPL_mean = 2*Re*beta_mean*deg2rad;% Mean footprint length[km]
   % Footprint Area [km^2]
   FPA_min = 2*pi*Re^2*(1-cos(beta_min*deg2rad));% Minimum footprint area[km^2]FPA_max = 2*pi*Re^2*(1-cos(beta_max*deg2rad));% Maximum footprint area[km^2]FPA_mean = 2*pi*Re^2*(1-cos(beta_mean*deg2rad));% Mean footprint area[km^2]
   % Velocity of the Satellite [m/s]
   V \max = sqrt(u*10^{6*}(2/r \min - 1/a));
% (Maximum) velocity of the satellite of minimum altitude [m/s]
   V \min = sqrt(u*10^{6*}(2/r \max - 1/a));
% (Minimum) velocity of the satellite of maximum altitude [m/s]
   V \text{ mean} = \text{sqrt}(u*10^{6}*(2/r \text{ mean}-1/a));
% Mean velocity of the satellite of mean altitude [m/s]
    % Duration of Visibility [minutes]
   t_max = FPL_max*10^3/V_min*sec2mn; % Minimum duration of visibility [minutes]
t_min = FPL_min*10^3/V_max*sec2mn; % Maximum duration of visibility [minutes]
   t mean = FPL mean*10^3/V_mean*sec2mn; % Mean duration of visibility [minutes]
   fprintf('\n 3/ Zone Coverage and Duration of Visibility ');
   fprintf('\n-----
  -----');
   fprintf('\n Orbit radius \t\t\t\t\t\t\t Minimum orbit radius \t\t Maximum orbit radius
\t\t Mean orbit radius');
    fprintf('\n \t\t\t\t\t\t\t\t\t\t\t\t %.2f \t km \t\t\t %.2f \t km \t\t\t %.2f \t km',
r min, r max, r mean);
   fprintf('\n Nadir angle \t\t\t\t\t\t Minimum nadir angle \t\t Maximum nadir angle
\t\t Mean nadir angle');
   \t\t degrees', alpha min, alpha max, alpha mean);
   fprintf('\n Central angle \t\t\t\t\t\t\t\t Minimum central angle \t\t Maximum central
angle \t\t Mean central angle');
   \t\t degrees', beta_min, beta max, beta mean);
```

fprintf('\n Footprint length \t\t\t\t Minimum footprint length \t Maximum footprint length \t Mean footprint length');

```
FPL min, FPL max, FPL mean);
   fprintf( \n Footprint area \t\t\t\t Minimum footprint area \t Maximum footprint
area \t Mean footprint area');
   fprintf('\n \t\t\t\t\t\t\t\t\t\t\t\t\t\%.2f km^2 \t\t\t %.2f km^2 \t\t\t %.2f km^2',
FPA min, FPA max, FPA mean);
   fprintf('\n Velocity of the satellite \t\t\t Minimum velocity \t\t\t Maximum velocity
\t\t Mean velocity');
   fprintf('\n \t\t\t\t\t\t\t\t\t\t\t\.2f \t m/s \t\t\t %.2f \t m/s',
V_min, V_max, V_mean);
   fprintf('\n Duration of Visibility \t\t\t Minimum duration \t\t\t Maximum duration
\t\t Mean duration');
   minutes', t min, t max, t mean);
   % The number of satellites required for continuous coverage in one repeat cycle
period T
   N_min = ceil(T/t_max);
N_max = ceil(T/t_min);
                                % Minimum number of satellites required
                               % Maximum number of satellites required
   N_max = Cell(T/t_min); % Maximum number of satellites required
N_mean = cell(T/t_mean); % Mean number of satellites required
   fprintf('\n Orbit period (T) \t\t\t\t\t %.2f \t minutes', T);
   fprintf('\n Number of satellites required \t\t Minimum number \t\t\t Maximum number
\t\t Mean number');
   N min, N max, N mean);
   fprintf('\n-----
            -----');
end
% return;
          %%II.4%% >>> Time of Flight (TOF) from perigee to true anomaly initial
% Input parameters: >>> true anomaly initial (v), eccentricity (e), period (T)
% Initial Value of eccentric (E) [rad]
E = 2*atan(sqrt((1-e)/(1+e))*tan(v/2*deq2rad));
% Mean anomaly (M) [rad]
M = E - e^* sin(E);
% Time of flight from perigee to true anomaly (TOF) [minutes]
if E >= 0
   TOF = M*T/(2*pi);
else
   TOF = T + (M*T/(2*pi));
end
fprintf('\n 4/ Time of Flight (TOF) from perigee to true anomaly initial ');
fprintf('\n-----
_____';
fprintf('\n True anomaly (v) \t\t\t\t\t %.2f \t\t degrees', v);
fprintf('\n Eccentricity (e) \t\t\t\t\t %.2f \t\t unit less', e);
fprintf('\n Orbit period (T) \t\t\t\t\t\&.2f \t minutes', T);
fprintf('\n Initial Value of eccentric (E) \t %.2f \t\t radians', E);
fprintf('\n Mean anomaly (M) \t\t\t\t\t %.2f \t\t radians', M);
fprintf('\n Time of Flight (TOF) \t\t\t\ %.2f\t\t minutes', TOF);
```

fprintf('\n-----_____ _____'; % return; %%II.5%% >>> Constellation % Input parameters: >>> period (T), Duration of Visibility (t) if ha==hp fprintf('\n 5/ Constellation '); fprintf('\n----------'); <u>%_____</u> % Walker Star Constellation : Approximated number of planes and total number of satellites % Input parameters: Number of satellite per plane (N), the earth central angle (beta) % Recall that: this constellation is used for the circular orbit with the % same altitude and the same coverage throughout the orbit %----- FPL (coverage), Duration of visibility (T), Number of satellite required _____ beta street = acos(cos(beta*deq2rad)/cos(pi/N)); % Street width [rad] beta street deg = beta street*rad2deg; % Street width [deg.] SOC_deg = 2*beta_street_deg; % Street of coverage [deg] SOC km = 2*Re*beta street; % Street of coverage [km] % The perpendicular separation or Phase difference between adjacent planes moving in the same direction D SD = beta street*rad2deg + beta; % [deg] % The perpendicular separation or Phase difference between adjacent planes moving in the opposite direction D OD = 2*beta street*rad2deg; % [deg] % We have: 2*beta street + (P-1)*(beta street+beta) = 180 [deg.] $P = ceil([(180 - \overline{D}OD)/(D_SD)]+1); % Number of planes$ TNOS = N*P; % Total number of satellites fprintf('\n \t\t\t Walker Star constellation : Approximated number of planes and total number of satellites '); fprintf('\n \t\t\t _____ n'); fprintf('\n Central angle \t\t\t\t\t\t\t %.2f \t\t degrees ', beta); fprintf('\n\n Number of satellites required'); fprintf('\n for continuous coverage \t\t\t %d ', N); fprintf('\n (Number of satellites per plane)\n'); fprintf('\n Street width \t\t\t\t\t\ %.2f \t\t degrees ', beta_street_deg); fprintf('\n\n Street of coverage (SOC) \t\t\t %.2f \t\t deg ', SOC_deg); fprintf('\n \t\t\t\t\t\t\t\t $\&.2f \ km \ n', SOC_km$); fprintf('\n\n Perpendicular separation (D)'); fprintf('\n between adjacent planes moving \t %.2f \t\t degrees ', D SD); fprintf('\n in the same direction\n'); fprintf('\n Perpendicular separation (D)'); fprintf('\n between adjacent planes moving \t %.2f \t\t degrees ', D OD); fprintf('\n in the different direction\n');

```
fprintf('\n Number of planes \t\t\t\t\t %d ', P);
   fprintf('\n Total number of satellite \t\t\t %d ', TNOS);
   8_____
   % Walker Delta Constellation
   8_____
   % Input parameters: i:T/P/F (i:TNOS/P/F), In our case: i:45/5/1
   % TNOS: Totalnumber of satellites
   % P: Number of planes
   % F: Relative spacing between satellites in adjacent planes
   % Relative spacing between satellites in adjacent planes
   % F = 1; % 0<= F <= P-1
   %----- Number of satellite required per plane (N), Pattern Unit (PU), Node
spacing,
  %------ In-plane spacing between satellites, Phase difference between adjacent
planes
   % Number of satellite required per plane
   N = TNOS/P;
   % Pattern Unit [deg.]
   PU = 360/TNOS;
   % Node spacing [deg.]
   NodeSpacing= PU * N;
   % In-plane spacing between satellites [deg.]
   IPS = PU * P;
   Phase difference between adjacent planes [deq.]
   APS = PU * F;
   fprintf('\n\n\n \t\t\t\t\t\t\t\t\t\t\t\tWalker Delta constellation (i:TNOS/P/F)');
   fprintf('\n Inclination (i) \t\t\t\t %.2f \t\t degrees', i);
   fprintf('\n Relative spacing between \t\t\t %.2f \t\t', F);
   fprintf('\ satellites in adjacent planes (F)\;
   fprintf('\n Number of planes (P) \t\t\t %d ', P);
   fprintf('\n Total number of satellite (TNOS) \t %d ', TNOS);
   fprintf('\n Pattern Unit (PU) \t\t\t\t %.2f \t\t degrees ', PU);
   fprintf('\n Node spacing \t\t\t\t\t\t\t %.2f \t\t degrees ', NodeSpacing);
   fprintf('\n In-plane spacing between \t\t\t %.2f \t\t degrees ', IPS);
   fprintf('\n satellites');
   fprintf('\n Phase difference between \t\t\t %.2f \t\t degrees ', APS);
   fprintf('\n adjacent planes');
   fprintf('\n------
       -----');
else
   fprintf('\n 5/ Constellation ');
   fprintf('\n-----
                                     _____
-----');
```

 $\ensuremath{\$$ Walker Star Constellation : Approximated number of planes and total number of satellites

\$ Input parameters: Number of satellite per plane (N), the earth central angle (beta) \$ Recall that: this constellation is used for the circular orbit with the

```
% same altitude and the same coverage throughout the orbit
   %----- Minimum FPL (coverage), Minimum duration of visibility (T), Minimum
number of satellite required ------
   %----- Maximum FPL (coverage), Maximum duration of visibility (T), Maximum
number of satellite required ------
   beta street min = acos(cos(beta min*deg2rad)/cos(pi/N max)); % Street width [rad]
   beta street max = acos(cos(beta max*deg2rad)/cos(pi/N min)); % Street width [rad]
    if beta street min>beta street max
        temp=beta street min;
        beta street min=beta street max;
       beta street max=temp;
   else
       %beta street min;
        %beta street max;
   end
   beta street min deg = beta street min*rad2deg; % Street width [deg.]
   beta street max deg = beta street max*rad2deg; % Street width [deg.]
    SOC min deg = 2*beta street min deg; % Street of coverage [rad]
   SOC min km = 2*Re*beta street min; % Street of coverage [km]
    SOC max deg = 2*beta street max deg; % Street of coverage [rad]
   SOC max km = 2*Re*beta street max; % Street of coverage [km]
   % The perpendicular separation or Phase difference between adjacent planes moving in
the same direction
   D min SD = beta street min*rad2deg + beta min; % [deg]
    % The perpendicular separation or Phase difference between adjacent planes moving in
the different direction
   D min OD = 2*beta street min*rad2deg; % [deg]
    % The perpendicular separation or Phase difference between adjacent planes moving in
the same direction
   D max SD = beta street_max*rad2deg + beta_max; % [deg]
    % The perpendicular separation or Phase difference between adjacent planes moving in
the different direction
   D max OD = 2*beta street max*rad2deg; % [deg]
    % We have: 2*beta street + (P-1)*(beta street+beta) = 180 [deg.]
    P min = ceil([(180 - D max OD)/(D max SD)]+1); % Number of planes
    % We have: 2*beta street + (P-1)*(beta street+beta) = 180 [deg.]
    P max = ceil([(180 - D min OD)/(D min SD)]+1); % Number of planes
    %----- Mean FPL (coverage), Mean duration of visibility (T), Mean number of
satellite required ------
   beta street mean = acos(cos(beta mean*deg2rad)/cos(pi/N mean)); % Street width [rad]
   beta_street_mean_deg = beta_street_mean*rad2deg; % Street width [deg.]
   SOC mean deg = 2*beta street mean deg; % Street of coverage [rad]
   SOC mean km = 2*Re*beta_street_mean; % Street of coverage [km]
   % The perpendicular separation or Phase difference between adjacent planes moving in
the same direction
   D mean SD = beta street mean*rad2deg + beta mean; % [deg]
```

% The perpendicular separation or Phase difference between adjacent planes moving in the different direction

```
D mean OD = 2*beta street mean*rad2deg; % [deg]
   % We have: 2*beta street + (P-1)*(beta street+beta) = 180 [deg.]
   P_mean = ceil([(180 - D_mean OD)/(D mean SD)]+1); % Number of planes
  TNOS min = N min*P min; % Total number of satellites
  TNOS max = N max*P max; % Total number of satellites
  TNOS mean = N mean * P mean; % Total number of satellites
  fprintf('\n \t\t Walker Star constellation : Approximated number of planes and
total number of satellites ');
  fprintf('\n \t\t\t
_____
n');
   fprintf('\n Central angle \t\t\t\t\t\t Minimum central angle \t\t Maximum central
angle \t\t Mean central angle');
   \t\t degrees', beta_min, beta_max, beta_mean);
   fprintf('\n Number of satellites required \t\t Minimum number \t\t\t Maximum number
\t\t\t Mean number');
  N min, N max, N mean);
   fprintf('\n (Number of satellites per plane)\n');
   fprintf('\n Street width \t\t\t\t\t Minimum street width \t\t Maximum street width
\t\t Mean street width');
   \t\t degrees', beta_street_min_deg, beta_street_max_deg, beta_street_mean_deg);
   fprintf('\n Street of coverage (SOC) \t\t\t Minimum SOC \t\t\t Maximum SOC \t\t\t
Mean SOC');
  SOC min km, SOC max km, SOC mean km);
   fprintf('\n Perpendicular separation (D) \t\t Minimum \t\t\t\t Maximum \t\t\t\t
Mean'):
   fprintf('\n between adjacent planes moving \t %.2f \t\t degrees \t\t %.2f \t\t
degrees \t\t %.2f \t\t degrees', D min SD, D_max_SD, D_mean_SD);
   fprintf('\n in the same direction\n');
   fprintf('\n Perpendicular separation (D) \t\t Minimum \t\t\t\t Maximum \t\t\t\t\t
Mean');
  fprintf('\n between adjacent planes moving \t %.2f \t\t degrees \t\t %.2f \t\t
degrees \t\t %.2f \t\t degrees', D_min_OD, D_max_OD, D_mean_OD);
   fprintf('\n in the different direction\n');
   fprintf('\n Number of planes \t\t\t\t Minimum number \t\t\t Maximum number \t\t\t
Mean number');
  P mean);
  fprintf('\n Total number of satellite \t\t\t Minimum number \t\t\t Maximum number
\t\t\t Mean number');
  TNOS max, TNOS mean);
   <u>&_____</u>
   % Walker Delta Constellation
   <u>%</u>_____
  % Input parameters: i:T/P/F (i:TNOS/P/F), In our case: i:45/5/1
```

- % TNOS: Totalnumber of satellites
- % P: Number of planes

```
% F: Relative spacing between satellites in adjacent planes
   % Relative spacing between satellites in adjacent planes
   % F = 1; % 0<= F <= P-1
   %----- Number of satellite required per plane (N), Pattern Unit (PU), Node
spacing,
        ----- In-plane spacing between satellites, Phase difference between adjacent
  8---
planes
   % Number of satellite required per plane
   N min = TNOS min/P min;
   % Pattern Unit [deg.]
   PU min = 360/TNOS min;
   % Node spacing [deg.]
   NodeSpacing min= PU_min * N_min;
   % In-plane spacing between satellites [deg.]
   IPS min = PU min * P min;
   % Phase difference between adjacent planes [deg.]
   APS min = PU min * F;
   %----- Number of satellite required per plane (N), Pattern Unit (PU), Node
spacing,
   %------ In-plane spacing between satellites, Phase difference between adjacent
planes
   % Number of satellite required per plane
   N max = TNOS max/P max;
   % Pattern Unit [deg.]
   PU max = 360/TNOS max;
   % Node spacing [deg.]
   NodeSpacing max= PU max * N max;
   % In-plane spacing between satellites [deg.]
   IPS_max = PU_max * P_max;
    % Phase difference between adjacent planes [deg.]
   APS max = PU max * F;
   %----- Number of satellite required per plane (N), Pattern Unit (PU), Node
spacing.
   %----- In-plane spacing between satellites, Phase difference between adjacent
planes
   % Number of satellite required per plane
   N mean = TNOS mean/P mean;
   % Pattern Unit [deg.]
   PU mean = 360/TNOS mean;
   % Node spacing [deg.]
   NodeSpacing mean= PU mean * N mean;
   % In-plane spacing between satellites [deg.]
   IPS mean = PU mean * P mean;
   % Phase difference between adjacent planes [deq.]
   APS mean = PU mean * F;
   fprintf('\n Inclination (i) \t\t\t\t %.2f \t\t degrees', i);
   fprintf('\n Relative spacing between \t\t\t %.2f \t\t', F);
   fprintf('\n satellites in adjacent planes (F)\n');
   fprintf('\n Number of planes (P) \t\t\t Minimum number \t\t\t Maximum number \t\t\t
Mean number');
```

P mean); fprintf('\n Total number of satellite (TNOS) \t Minimum number \t\t\t Maximum number \t\t\t Mean number'); TNOS max, TNOS mean); fprintf('\n Pattern Unit (PU) \t\t\t\t Minimum PU \t\t\t\t Maximum PU \t\t\t\t Mean PU'); \t\t degrees', PU min, PU max, PU mean); fprintf('\n Node spacing \t\t\t\t\t\t Minimum \t\t\t\t\t Maximum \t\t\t\t\t\t Mean'); \t\t degrees', NodeSpacing min, NodeSpacing max, NodeSpacing mean); Mean'); fprintf('\n satellites \t\t\t\t\t\t %.2f \t\t degrees \t\t %.2f \t\t degrees \t\t %.2f \t\t degrees', IPS min, IPS max, IPS mean); fprintf('\n Phase difference between \t\t\t Minimum \t\t\t\t Maximum \t\t\t\t Mean'); fprintf('\n adjacent planes \t\t\t\t\ %.2f \t\t degrees \t\t %.2f \t\t degrees \t\t %.2f \t\t degrees', APS min, APS max, APS mean); fprintf('\n----------');

end return;

A.II.4 Orbital calculation

A. Orbital parameters

The results of orbital parameters of the different orbit types in Table A.II.2 are obtained by applying the formulas in Annex II, A.II.2 and computing in MATLAB where its code is given in Annex II, A.II.3.

Orbit transf		Elliptical				
		LEO	VLEO	MEO "Malaina"	MEO "Ture due"	LEO
Orbital parameters	Unit			"Nioiniya"	"Tundra"	
Earth radius (R_e)	[km]	6378.14	6378.14	6378.14	6378.14	6378.14
Height of apogee (h_a)	[km]	1447.00	370.00	39105.00	46340.00	650.00
Height of perigee (h_p)	[km]	354.00	368.00	1250.00	25231.00	650.00
Inclination (<i>i</i>)	[degrees]	71.00	40.02	63.4	63.4	72
R.A.A.N (Ω)	[degrees]	45.00	45.00	45.00	45.00	45.00
Argument of perigee (ω)	[degrees]	30.00	30.00	30.00	30.00	0.00
True anomaly (v)	[degrees]	15.00	15.00	15.00	15.00	45.00
Semi-major axis (a)	[km]	7278.64	6747.14	26555.64	42163.64	7028.14
Eccentricity (e)	[unit less]	0.08	0.00015	0.71	0.25	0.00
Orbital period (T)	[minutes]	103.00	91.93	717.79	1436.04	97.73
Mean anomaly (M)	[degrees]	12.89	15.00	1.78	8.75	45.00
Time rate of change of ω ($d\omega$)	[degrees/day]	-1.49	7.91	0.00	0.00	-1.85
Time variation of R.A.A.N $(d\Omega)$	[degrees/day]	-2.07	-6.27	-0.13	-0.01	-2.19
Sun-synchronous inclination	[degrees]	98.93	96.92	None	None	97.99

Table A.II.2. Orbital parameters of different orbit	Table A II 2 · Orbital parameters of d	different or	oits
---	--	--------------	------

According to the results of orbital parameters of different orbits in Table A.II.2, we can notice that:

- Height of apogee (h_a) or Height of perigee $(h_p) \uparrow (\uparrow: \text{ increase}) \Rightarrow \text{Semi-major axis } (a) \uparrow \Rightarrow \text{Orbital period } (T) \uparrow$ (the bigger size of orbit is, the slower of velocity of satellite, and hence the longer orbital period). Also, the bigger size of orbit results in the smaller of time rate of change of ω ($d\omega$) and time variation of R.A.A.N ($d\Omega$).
- [Height of apogee (h_a) Height of perigee (h_p)] ↑ (increasing in orbit size)⇒ Eccentricity (e) ↑ (= 0: circular orbit, < 1: elliptical orbit, = 1: parabolic orbit, > 1: Hyperbolic orbit)
- If $0^{\circ} < i < 90^{\circ}$, then $d\Omega < 0$. That is, for prograde orbit, the node line drifts westward. Therefore, since the right ascension of the node continuously decreases, this phenomenon is called regression of the nodes. If $90^{\circ} < i < 180^{\circ}$, we see that $d\Omega > 0$, the node line advances eastward; it is called retrogression of the nodes (retrograde orbit). For polar orbit ($i = 90^{\circ}$), the node line is stationary. (See Figure A.II.4)
- If $0^{\circ} < i < 63.4^{\circ}$ or $116.6^{\circ} < i < 180^{\circ}$, then $d\omega > 0$, which means *the perigee advances* in the direction of the motion of the satellite. If $63.4^{\circ} < i < 116.6^{\circ}$, *the perigee regresses*, the perigee moves in opposite to the direction of motion of the satellite. $i = 63.4^{\circ}$ and $i = 116.6^{\circ}$ are the critical inclinations at which the apse line does not move. (See Figure A.II.4)

B. Slant range and free space path loss

This section will study the impact of orbit types (orbit altitude), elevation angles and frequency bands on slant range and free space path loss. The slant range depends on the orbit altitude and elevation angle, and the free space path loss depends on the slant range and frequency.

As shown in Table A.II.3, Table A.II.4 and Table A.II.5, we can observe that

- If the orbit altitude \uparrow (\uparrow : increase) \Rightarrow the slant range $\uparrow \Rightarrow$ free space path loss \uparrow
- If the elevation angle \downarrow (\downarrow : decrease) \Rightarrow the slant range $\uparrow \Rightarrow$ free space path loss \uparrow
- If the frequency \uparrow (\uparrow : increase) \Rightarrow free space path loss \uparrow

Note: Minimum altitude of satellite = Altitude of perigee (h_p)							
Elevation Angle [Degrees]			5				
			Uplink		Dowr	nlink	
Frequency	[MHz]		435.00		145.00		
Wavelength	[m]		0.69	2.07		.07	
Drhit type		Slant Range	Propagation delay	Free Space (FS) path losses [dB]		e (FS) path s [dB]	
	[km]		[sec]	Uplink		downlink	
Elliptical LEO Apogee (h_a): 1447.00 km, Perigee (h_p): 354	.00 km	1668.98	0.005567	149	.68	140.14	
Elliptical VLEO Apogee (h_a): 370.00 km, Perigee (h_p): 368.0	00 km	1710.99	0.005707	149	.90	140.36	
Elliptical MEO "Molniya" Apogee (<i>h_a</i>): 39105.00 km, Perigee (<i>h_p</i>): 12	50.00 km	3665.11	0.012225	156	.51	146.97	
Elliptical MEO "Tundra" Apogee (<i>h_a</i>): 46340.00 km, Perigee (<i>h_p</i>): 25	231.00 km	30408.05	0.101428	174	.89	165.35	
Circular LEO Apogee (h_a) : 650.00 km, Perigee (h_p) : 650.0	00 km	2447.95	0.01	153	.01	143.47	

Table A.II.3 : Slant range and free space path loss for different orbit types (orbit altitude) with elevation angle 5°

	Elli	iptical LEO				
			Uplink	Ţ	Downli	nk
Frequency	Frequency [MHz]		435.00		145.00	
Wavelength	[m]		0.69	2.07		
Elevation	n Angle [Degrees]	Slant Range	Propagation delay	Free	Space (I [d]	FS) path loss B]
Elevation Angle [Degrees]		[km]	[sec]	Up	link	downlink
	5	1668.98	0.005567	149	9.68	140.14
	10	1314.78	0.004386	14	7.61	138.07
	15	1063.28	0.003547	14:	5.77	136.22
	20	884.45	0.002950	144	4.17	134.62
	25	755.11	0.002519	142	2.79	133.25

Table A.II.4 : Slant range and free space path loss for different elevation angles

	Ell	iptical LEO				
Elevation Angle [Degrees]		5				
			Uplink		Downli	nk
Frequency	[MHz]		435.00		145.00	
Wavelength	[m]		0.69		2.07	
Frequency bands		Slant Range	Propagation delay	Free	Space (I [d]	FS) path loss B]
Ĩ		[km]	[sec]	Up	link	downlink
UHF/VHF Uplink frequency (UHF): 435. Downlink frequency (VHF): 1	.00 MHz 45.00 MHz	1668.98	0.005567	149	9.68	140.14
Ku Uplink frequency (UHF): 140 Downlink frequency (VHF): 1	00 MHz 2000 MHz	1668.98	0.005567	7 179.83		178.50
Ka Uplink frequency (UHF): 300 Downlink frequency (VHF): 2	00 MHz 0000 MHz	1668.98	0.005567	180	5.45	182.93

Table A.II.5 : Slant range and free space path loss for different frequency bands

A.II.5 Circular orbit constellations

The circular orbit constellation is used for the whole earth coverage because of their common altitude and inclination which provide a constant coverage or fixed satellite footprint size throughout the orbit. Recall that the coverage of satellite is greatly dependent on its altitude. There are two basic types of circular orbit constellation which have arisen from the street of coverage method: "Walker Star" and "Walker Delta" constellations [3].

The "*street of coverage*" method, which is shown in the Figure A.II.5, is a method which consists in lining up several satellites in an orbital plane to provide a dense set of overlapping coverage circles. One street of coverage will provide continuous coverage under the orbit trace, but is insufficient to provide complete Earth coverage. By using multiple streets of coverage from several satellites planes, (continuous) whole-Earth coverage can be achieved.

- A. Walker Star
- This type of constellation requires that all orbits have a common inclination of 90 degrees or near 90 degrees.
- The "Walker Star" name comes from the fact that, if we draw on a polar map, the orbital planes intersect to make a star, as shown in Figure A.II.6. It can also be called as the π -constellation (RAAN Spread is 180°, the angle that is subtended in the plane of reference by the surface made by joining the evenly-spaced ascending nodes of the orbital planes).
- The characteristics of a Walker Star Constellation are shown in Table A.II.6 and Figure A.II.7.

Table A.II.6 : Characteristics of a Walker Star constellation (β , S)

B. Walker Delta

- This type of constellation requires that orbital planes is inclined with a constant inclination (generally less than 90°) and the evenly spacing of the right angles of the ascending nodes $\Omega 1...\Omega p$ across the full 360° of longitude, which means that ascending and descending planes of satellites and their coverage continuously overlap, rather than being separated as the ones with the Walker Star constellation.
- The "Walker Delta" name comes from the fact that, if we draw on a polar map, at a minimum of three orbital planes, a rounded triangle or Greek delta letter (Δ) is formed around the pole by these planes, as shown in Figure A.II.8. It can also be called as the 2□-constellation (RAAN Spread is 360°, the angle that is subtended in the plane of reference by the surface made by joining the evenly-spaced ascending nodes of the orbital planes).
- The characteristics of a Walker Delta constellation are shown in Figure A.II.8 and Table A.II.7.

Example: 55°: 25/5/1 constellation shown in Figure A.II.9.

- > Inclination angle: $i = 55^{\circ}$
- > 25 satellites in 5 planes (T = 25, P = 5 and F = 1)
- > 5 satellites per planes (S = T/5 = 5)
- > Pattern Unit : $PU = 360^{\circ}/T = 14.4^{\circ}$
- > Node spacing [degrees] = $PU \times S = 14.4 \times 5 = 72^{\circ}$
- > In-plane spacing between satellites [degrees] = $PU \times P$ or = $360^{\circ}/S = 72^{\circ}$
- > Phase difference between adjacent planes [degrees] = $PU \times F = 14.4^{\circ}$

In Figure A.II.9, satellite 1 is positioned at its ascending node, therefore, the satellite 6 which is the satellite in the next most-Easterly plane is located one PU beyond its nodal position.

<u>Note:</u> When $i = 90^{\circ}$, the formula of Node Spacing in the Table A.II.7 is changed to Node spacing [degrees] = $180^{\circ}/P$, and the Walker Delta constellation or π -constellation is become the Walker Star constellation or π -constellation.

A.II.6 Space environment

This section will present about the earth's atmosphere and the space environment effects on satellites.

A. Earth's atmosphere

The Earth's atmosphere ([6], [12]) is divided into 5 regions: troposphere, stratosphere, mesosphere, thermosphere and exosphere. The boundaries between these regions are called the tropopause, stratopause, mesopause, and exobase. The earth's atmosphere is illustrated in Table A.II.8 and Figure A.II.11.

	Troposhpere	Stratosphere	Mesosphere	Thermosphere	Exosphere
Altitude	Between about 0 to 10 km	Between about 10 to 50 km	Between about 50 to 80 km	Between about 80 to 500 km	Between about > 500 km
Temperature	Decrease with altitude 20 to -60 °C	Increase with altitude -60 to -15 °C	Decrease with altitude -15 to -100 °C	Increase with altitude -100 to 2 000 °C	Increase with altitude > 2 000 °C

Fable	A.II.	8:	Earth'	s atmos	phere

- *Ozone layer* (Ozonosphere): is in the stratosphere region which is vitally important to life because it absorbs biologically harmful UV radiation from the Sun.
- *Ionosphere*: This is the region of the atmosphere that contains ions (that form a "plasma"), created by the interaction of solar radiation with gas particles. The ionosphere overlaps with the mesosphere and thermosphere, going up to an altitude of 550 km.
- *Homosphere* (or *Turbosphere*) and *Heterosphere*: The region below the turbopause (that is, below an altitude of about 100 km) is known as the *homosphere* or *turbosphere*, where the chemical constituents are well mixed and the composition of the atmosphere remains fairly uniform. The region above the turbopause is called the *heterosphere*, where, in the absence of mixing, the chemical composition of the atmosphere varies.
- *Van Allen radiation belts*: These are regions where charged particles (forming a plasma) from the solar wind are trapped by the Earth's magnetic field. Qualitatively, there are two belts: an inner belt, consisting mostly of protons, and an outer belt, consisting mostly of electrons. The Van Allen radiation belts are shown in Figure A.II.10.

B. Space environment effects on satellites

The space environment has significant effects on satellites. The discussion below highlights the principal effects experienced by satellites orbiting the Earth.

Atomic oxygen

The atomic oxygen atoms impact the satellite materials with their high chemical reactivity. To provide corrosion protection against atomic oxygen, the satellite faces are covered with a protective layer through the chemical treatment process, Alodine.

Plasma

Particles in plasma around the spacecraft are not neutral, therefore possibly leading to charging of the spacecraft, and hence to subsequent electric discharges. This can occur in the proximity of the Van Allen radiation belts.

- Charging from plasma bombardment usually results in a negative charge on the surface of the satellite.
- The photoelectric effect results from solar radiation which liberates electrons on a satellite's surface, resulting in a positive charge on the satellite's sunlit side. A satellite will usually have a negative potential on shaded areas (due to plasma charging) and a positive potential on sunlit areas (due to the photoelectric effect). If the surface of the satellite is conductive, a current will develop to cancel these potentials. For a non-conducting surface, the charge separation will be maintained until voltage exceeds the resistive threshold of the material. This leads to a sudden electrostatic discharge.

These discharges can cause:

- Hardware damage: structural damage, deterioration of the thermal shielding, blown fuses or exploded transistors, capacitors and other electronic components.
- Electrical or electronic problems: false commands, on/off circuit switching, memory changes, degradation of solar cell and optical sensors.

Therefore, to prevent these problems, the outer surfaces of the satellite will be electrically connected and will be recovered by a conducting layer.

High energy solar flare effect

The high energy solar flare can cause electronic problems and direct damage to satellite's hardware. In order to protect the satellite from this high energy solar flare effect, we need to harden the sensible parts and carefully select of materials.

Out-gassing

Above 100 miles altitude, there is almost no atmospheric pressure, similar to a complete vacuum. In a vacuum, some materials experience out-gassing. Out-gassing is a phenomenon where molecules of material evaporate into space. Out-gassing can result in changes to the physical properties of a material, affecting their performance (decrease of their efficiency). For OUFTI-1, the major contamination problem from out-gassing is the deposit on solar cell surfaces. This phenomenon can be minimized by the proper selection of materials.

Thermal environment

Thermal environment changes depend on solar activity. Typically, the outer surfaces of the CubeSat, e.g. the solar cells, may experience temperatures ranging from -30° C to $+60^{\circ}$ C, whereas the inner parts, e.g. the electronic components, may experience temperatures ranging from -10° C to $+40^{\circ}$ C. The thermal cycles create structural constraints leading to the degradation of the structure. These constraints can be reduced by using materials having the same expansion coefficients.

Space debris

Space debris is defined as any non-operational man-made object of any size in space generated by spacecraft explosions and by collisions between satellites. The satellites can be damage due to the collision with the space debris (speed 7-8 km/s). In order to reduce collision risks between satellite and space debris, the removal of enough large debris objects need to be taken place by either return it to Earth, or alter its orbit to burn up sooner than normal. For OUFTI-1, shielding, energy absorbing panels and other design considerations can make a satellite more resistant to damage from impacts with small space debris.

A.II.7 Characteristic of nanosatellite and ground station studied

	Frequency band, altitude of satellite, and elevation angle										
Frequency band		UHF/VH	F		Kı	u			Ka	l	
Uplink frequency	[MHz]	435			14	000			30000		
Downlink frequency	[MHz]	145			12	2000			20	000	
Altitude of satellite	[km]	At perige	e					-			
Elevation angle	[°]	5			5				5	5	
		0	rbi	t type							
Orbit type		LEO		VLEO		MEO	"Mol	niya"		MEO "Tun	dra"
Apogee altitude (ha)	[km]	1447.00		370.00		39105.00		46340.00			
Perigee altitude (hp)	[km]	354.00	354.00 368.00			1250.	00			25231.00	
		An	ten	na type							
Frequency band		UHF/VH	F		Kı	u			Ka	l	
Antenna type		Monopole	e		Pa	Patch		Patch			
		Mono	pol	e antenn	a	a					
	Frequency band		-		UH	F/VHF					
	Frequency		[MH	[z]	120	000	1400	00			
	Antenna gain		[dB]		2.1	2.15 2.15			<u>]</u>		
Patch antenna						 					
Frequency bar	nd	Ku				K	Ka		_		
Frequency	[M]	Hz]	12	.000	14	4000	20	0000		30000	
Dielectric con	stant [U	nt [Unit less]		10	2.	.10	2.	.10		2.10	
Substrate thick	kness [m	ess [m] 0		000642	0.	.000642	0.	.0003		0.000642	
Antenna gain	i [dł	3]	5.5	59	5.	.27	6.	.90		5.27	
	Protocol, trans	mitter pow	er, (data rate	and	l modula	ation	type			
Protocol		AX.25			D	D-STAR			Beacon		
Transmitter power	[W]	0.75			0.′	75			0.1		
Data rate	[bps]	20			96	500			48	00	
Modulation type		FSK non-	-coh	erent	FS	SK non-o	cohere	ent	GMSK		
Coding		None			No	one			Nc	one	
BER		10-5			10) ⁻⁵			10 ⁻⁵		
System required E _b /N ₀) [dB]	13.35			13.35			9.72			

Table A.II.9 : Characteristics of the nanosatellite studied

	Gro	und station type and its	location	
Туре		Gateway		
City		Liege		
Country		Belgium		
Latitude	[°N]	50.62		
Longitude	[°E]	5.5667		
Altitude at sea level	[km]	0.00		

	Antenna type								
Frequency band UHF/VHF			F Ku		Ка				
Antenna type Yagi			Yagi			Parabolic		Parabolic	
			Yagi	antenna	1				
	Frequency band		0		U	HF/VHF			
	Boom Length (λ)		.):	[m]	1.	5			
		Optimum Eleme	ents	7					
	Antenna gain			[dB]	13	3.35			
			Parabo	lic anten	na				
Frequency band			Ku			Ka			
	Frequency		[MHz]	12000		14000	20000	30000	
	Dish diameter	r	[m]	4.5		4.5	4.5	4.5	
Dish Aperture efficiency		[%]	60.50		60.50	60.50	60.50		
Antenna gain		[dB]	52.87		54.20	57.30	60.82		
	-	Protocol, transm	itter power	, data ra	te a	and modulat	ion type		
Protocol			AX.25			D-STAR			
Transmitter power [W]		20			20				
Data rate	Data rate [bps] 4		4800				9600		
Modulatio	n type		FSK non-c	oherent			GMSK		
Coding			None				None		
BER			10-5				10 ⁻⁵		
System red	quire E _b /N ₀	[dB]	13.35				9.72		

Table A.II.10 : Characteristics of the ground station studied

Annex III

A.III.1 STK instructions

- Steps to create a scenario:
 - $\blacktriangleright \quad \{\text{Open } STK \to \text{Click } File \text{ menu} \to \text{Click } New\} \text{ or Click } \overset{\text{lick }}{\cong} Create \ a \ New \ Scenario \ \text{icon } \to \text{Input} \\ [Name, Description, Location, Analysis period (start time to stop time), Central Body] \to \text{Click } OK$
- Steps to create a satellite by using the Define Properties:

 - Go to satellite Basic-orbit page → Input [Propagator (Click → J2Perturbation), Step Size, Coord Type (Click → Classical), Coord System (Click → J2000), Apogee Altitude (Click → Apogee Altitude), Perigee Altitude (Click → Perigee Altitude), Inclination, Argument of Perigee, RAAN (Click → RAAN), True Anomaly (Click → True Anomaly)]
 - Go to satellite 2D or 3D Graphics Settings to enhance the clarity, the realism and even the accuracy of your 2D and 3D visualizations.
 - Go to satellite *Constraints Settings* to model the performance characteristics and limitations of objects in the scenario more accurately.
 - Click *OK* to apply the changes and close
 - Select the *Satellite* in the Object Browser
 - Click *F2* and rename the facility

Note:

- To find the orbital period for a pass (a pass is a complete orbit of a satellite around the Earth between successive node crossings) and eccentricity, Click reaction in the drop out options list → Select Period (see Figure A.III.1)
- To find the satellite Cartesian position, Click ≥ at the Coor Type to open the drop out options list → Select Cartesian (see Figure A.III.1)
- Steps to create a facility by using the City Database:
 - $\ \{ Click Insert menu \rightarrow Click New \} \text{ or Click Insert New Object (} icon \rightarrow Select \ ext{ a facility } \rightarrow Select \ ext{ from City Database } \rightarrow Click Insert \text{ to bring up the City Database window }$
 - Input [*City name* (Toulouse or Liege)] \rightarrow Click *Search* \rightarrow Select the right *city* from the search results list \rightarrow Click *Insert* and *Close*
 - Right-click on *Facility* in the Object Browser \rightarrow *Properties* \rightarrow Go to *2D or 3D Graphics Settings* to enhance the clarity, the realism and even the accuracy of your 2D and 3D visualizations
 - Click **OK** to apply the changes and close
 - Select the *Facility* in the Object Browser
 - Click *F2* and rename the facility
- Steps to get Classical Orbit Elements report:

{Right-click Statellite in the Object Browser \rightarrow Select Report & Graph Manager} or {Click Report & Graph Manager icon \rightarrow Choose Satellite in object type \rightarrow Select the Satellite which you want to get report} \rightarrow Go to Styles \rightarrow Select Show Reports and Unselect Show Graphs \rightarrow Go to Installed Styles \rightarrow Select Classical Orbit Elements \rightarrow Go to Generate As \rightarrow Select Report/Graph \rightarrow Click Generate

- Steps to get Access report:

Orbit Epoch:	7 Jul 2011 10:00:00.000 UTCG 👜	Apogee Altitude 🗸 🗸	1447 km	Ŧ
Coord Epoch:	1 Jan 2000 11:58:55.816 UTCG 💭	Perigee Altitude 🗸 🗸	354 km	Ţ
Coord Type:	Classical 🖌	Inclination	71 deg	Ţ
Coord System	J2000 🗸	Argument of Perigee	30 deg	Ţ
Prop Specific:	Special Options	RAAN 🗸	45 deg	Ţ
		True Anomaly 🗸 🗸	15 deg	Ţ
Orbit Epoch:	7 Jul 2011 10:00:00.000 UTCG 🛛 🗐	Period 🗸	102.999 min	Ţ
Coord Epoch:	1 Jan 2000 11:58:55.816 UTCG 📟	Eccentricity	0.0750827	Ţ
Coord Type:	Classical 🗸	Inclination	71 deg	Ţ
Coord System:	J2000 👻	Argument of Perigee	30 deg	Ţ
Prop Specific:	Special Options	RAAN	45 deg	Ţ
		True Anomaly	15 deg	
Orbit Epoch:	7 Jul 2011 10:00:00.000 UTCG 🛛 🕎	X:	2275.6 km	The second secon
Coord Epoch:	1 Jan 2000 11:58:55.816 UTCG 📟	Y:	4472.6 km	Ţ
Coord Type:	Cartesian 🖌	Z:	4511.73 km	Ţ
Coord System:	J2000 👻	X Velocity:	-313.603 km/min	Ţ
Prop Specific:	Special Options	Y Velocity:	-155.307 km/min	Ţ
		Z Velocity:	325.075 km/min	Ţ
Figure A	III.1: How to find orbital p	period and Cartesian	position in ST	K

- Steps to get AER report of facility:
- Steps to add a minimum elevation angle constraint on facility:
 - ➢ Right-click Facility (e. Liege or Toulouse) in the Object Browser → Select Properties → Go to Constraints-Basic page → Go to Elevation Angle → Select Min → Input the constraint value → Click OK to apply and close
- Steps to get create a satellite constellation in STK:
 - Create facilities (ground stations) and nanosatellite which is described in IV.2.2 A.
 - ➢ Right-click Statellite in the Object Browser → Go to Satellite → Select Walker → Input [*Type*: Delta, *Number of Planes, Number of Sats per Plane, Inter-Plane Spacing* which is the relative spacing between satellites in adjacent planes *F* equal to 1 for all constellations in this thesis, *RAAN Spread* which is equal to 180° for Walker Star constellation (usually for polar or near polar orbit, inclination of 90° or near 90°) and which is 360° for Walker Delta constellation (for orbit with an inclination generally less than 90°), Select *Color by Plane*, Select *Create unique names for sub-objects*, Select *Create Constellation* to have STK automatically create a Constellation object that includes all of the

satellites in the Walker constellation. Enter *the constellation's name* in the text box] \rightarrow Click *Create Walker* and *Close*

To address area coverage capabilities, the Coverage module of STK provides two STK object classes: <u>Coverage</u> <u>Definition</u> (*) and <u>Figure of Merit</u> (*). Coverage Definition objects allow to define and maintain an area of coverage, to define the STK objects providing coverage for the area (such as satellites, aircraft and sensors), to define the time period of interest, and to calculate accesses to the region. The Figure of Merit objects attaching to a Coverage Definition object provide the means for evaluating the quality of coverage provided by the assigned objects (or assets).

Steps to define the Coverage Region and Assign Assets

- Double-click the **b** icon in the **Object Catalog** to add a **Coverage Definition** object to the scenario
 - Open the Basic Grid page from the *Coverage Definition properties*, and set the following options:
 - Grid Area of Interest Type: Global
 - **Point Granularity**: Lat/Lon
 - *Point Granularity Value*: 6.0 deg
- Open the Assets page. Select the Satellite Constellation, click Assign, make sure that Status is set to Active, and click Apply
- > Open the 2D Graphics-Attributes page, and set the following options as shown in Figure A.III.2

Basic Grid Grid Assets Interval Advanced Description CD Graphics Mtributes SD Graphics Mtributes	Static Graphics Show Regions Show Region Labels Show Points Color: Points Fill Marker Style:	Progress of Computations Show Color: Animation Graphics Show Satisfaction Color:
Figure A.III.2	: 2D Graphics-Attributes page o	f Coverage Definition

- Click OK, and then select the Coverage Definition in the Object Browser, select Compute Accesses from the Coverage Definition Tools menu.
- Steps to assess the Quality of Coverage with a Figure of Merit
 - Select the *Coverage Definition* in the *Object Browser*, and double-click the icon in the *Object Catalog* to add a *Figure of Merit*
 - > Open the *Definition page* of the *Figure of Merit*. Choose *Simple Coverage* for the *Type*
 - Open the 2D Graphics-Attributes page for the Figure of Merit, and set the following options as shown in Figure A.III.3
 - Click *OK*, and animate the scenario

Attributes	Basic Definition Description C2D Graphics Attributes Graphics Graph	Static Graphics Show Color: Points Fill Marker Style:	Animation Graphics Animation Graphics Show Accumulation: Current Time Color: Points If Hill Marker Style:
------------	---	---	--
- Steps to get Global <u>C</u>overage report:
 - For the select the select the select for the coverage definition in the object Browser→ Select and the select the sele
- ✤ Steps to create a *A* Chain and get a Complete Chain Access report:
 - Set up your scenario with at least three different assets. These can be satellites, ground vehicles, facilities, targets, or aircraft.
 - ▶ Insert a *P* Chain object and open up its properties browser.
 - On the *Basic Definition page* for the *Chain*, highlight the object that starts the communications link and click to move it from *Available Objects* to *Assigned Objects*.
 - ▶ Next, select the object that will relay your communications and click ⊇.
 - Finally, select and assign the object that will receive communications.
 - \blacktriangleright Once finished, click **OK** to close the Chain property browser.
 - Right-click the *Chain* object, select *Chain Tools* \rightarrow *Report*, and create the Complete Chain Access report. This gives the times and durations that the complete chain has access.
 - Click I to reset the animation and then click to animate the scenario. A yellow line will connect the objects in the *Chain* during periods of access in the 3D Graphics window.
- Steps to add an *Sensor*:
 - Attach a *Sensor* (\bigotimes) to the satellite
 - Rename the *Sensor* by press *F2* after selecting it
 - > Open *Sensor's* () *Properties*
 - Select the *Basic Pointing page*
 - Set the *Pointing Type* to *Targeted*, set the *Track Mode* to *Transpond*, and set the *About Boresight* to *Rotate*
 - Select () Station in the Available Targets section
 - Move (Assigned Targets section to the Assigned Targets section
 - Click OK

<u>Note:</u> *Transpond* tracking mode means that the antenna points to the true location of the target object. This mode is the most appropriate for 2-way communications and is typically sufficient for all non-laser communications. Access computations including the computation of targeting times are performed based on the sensor being the transmitter of the signal.

- Steps to add an Antenna:
 - Select whether satellite's sensor or facility in the *Object Browser* that you want to attach the antenna to \rightarrow Double-click the *antenna* icon in the *Object Catalog* to add an antenna
 - Rename the antenna's name in the *Object Browser* to a proper name by press F2 after selecting it
 - > Open Antenna's Properties Browser ())
 - Select *Basic Definition page*
 - Set the *Type* to *Isotropic*, and set the design frequency according to your system
 - Leave all other defaults
 - Click OK

<u>Note</u>: In fact, the type of our system antennas is whether Monopole (for satellite) or Yagi (for ground station). But, there has no such model/type of antenna in STK. To set such model/type of antenna in STK, we have to set the Type to Antenna Script and add a whether MATLAB or Visual Basic script file of such type of antenna. Also, STK must have a license to integrate with MATLAB or Visual Basic, for example the STK/MATLAB license. So, to simplifier the problem and as we don't have a STK/MATLAB license for our educational used only version of STK, we will set the *Type* to *Isotropic* with the antenna gain equal to zero dB, and we will set the antenna gain of Monopole or Yagi in the Additional Transmitter Gains/Losses tab of Transmitter or Receiver instead.

- Steps to add a transmitter (Figure A.III.4):
 - Select whether satellite or facility in the Object Browser that you want to add a transmitter \rightarrow Doubleclick a *transmitter* (a) *icon* in the Object Catalog to add a transmitter
 - Rename the transmitter's name to a proper name by press F2 after selecting it
 - > Open the transmitter () *Properties Browser* ())
 - Select the *Basic Definition page*
 - Set the *Type* to *Complex TransmitterModel*
 - Select *Model Specs tab* and set the value of frequency and power
 - Click on the Antenna Tab and set the Reference Type to Link. Note that Sensor/ "Sensor's name"/Antenna/ "Antenna's name" is the Antenna Name
 - Select *Modulator tab*, enter the value at *Data Rate* and choose the *NFSK* (for AX.25 and Beacon protocol) or *BPSK* (for D-STAR protocol) for *Modulation Type*, and make sure the *Auto Scale* is selected for Signal Bandwidth
 - Select *Filter tab*, and make sure the *Use* is unselected
 - Select the Additional Gains and Losses tab, add Antenna gain and Total transmission line losses into the Pre-Receive Gains/Losses, and set their value
 - Click OK

<u>Note</u>: As in STK, it doesn't have a GMSK modulation type and also as we don't have a STK/MATLAB license in our STK of educational used only version to integrate the MATLAB script file with STK, in order to facility the simulation we will therefore choose the BPSK instead of GMSK for communication in D-STAR protocol.

- Steps to add a receiver (Figure A.III.5):
 - Select whether satellite or facility in the *Object Browser* that you want to add a receiver \rightarrow Doubleclick a *receiver* \bigotimes *icon* in the *Object Catalog* to add a receiver.
 - Rename the receiver's name to a proper name by press F2 after selecting it
 - > Open the receiver's *Properties Browser* ())
 - Select the *Basic Definition page*
 - Set the *Type* to *Complex Receiver Model*
 - Select *Model Specs tab* and set all parameters in this tab. For example, set frequency to 145 MHz for downlink and make sure the *Auto Track* is selected, Eb/N₀ threshold to 14.35 dB for modulation NFSK as shown in Figure A.III.5
 - Click the Antenna tab and set the Reference Type to Link. Note that Antenna/ "Antenna's name" is the Antenna Name

<u>Note</u>: Set the *Reference Type* to *Link* is to create the linked antenna which is independent of any receiver or transmitter and thus facilitate the sharing of the antenna by several transmitters and receivers.

- Select the System Noise Temperature tab, select Constant and set the value
- Select the Filter tab and make sure the Auto Scale is selected
- Select the Additional Gains and Losses tab, add Antenna pointing loss at TX, Antenna polarization loss at TX, Antenna pointing loss at RX, Antenna gain, Atmosphere losses, Ionosphere losses, Rain losses, Total transmission line losses at RX into the Pre-Receive Gains/Losses, and set their value.

<u>Note</u>: As in STK, it doesn't have the model of our antenna type (so as the antenna pointing loss, the antenna polarization loss), atmosphere losses, ionosphere losses, rain losses, and also as we don't have a STK/MATLAB license in our STK of educational used only version to integrate the MATLAB script file with STK, we'll add all these parameters as a constant value in the Additional Gains and Losses tab of the Receiver in order to simplifier the problems.

Click OK.

Basic Definition Refraction Refraction Description 2D Graphics Contours Boresight 3D Graphics Attributes Vector	Type: Complex Transmitter Model Model Specs Antenna Modulator Filter Additional Gains and Losses Frequency: 145 MHz Power: -1.24939 dBW
Basic Comm Interference Sun Temporal Advanced Zones Targeting Vector Special Plugins	
Model Specs Antenna Modulator Filter Additional G Reference Type: Link V Model Specs Polarization Orientation Antenna Name: Sensor/Sensor/Antenna/Antennal Type: Esotropic Design Frequency: 145 MHz Main-lobe Gain: 0 dB Efficiency: 100 %	ains and Losses Model Specs Antenna Modulator Filter Additional Gains and Losses Post Transmit Gains/Losses Identifier Gain Add IL Identifier Gain Add Total transmission line losses -1.02 dB Remove Remove All Total Gains/Losses: 1.13 dB Image: Constraint of the second
Model Specs Antenna Modulator Filter Additional Gains a Use Signal PSD Data Rate: 0.0096 Mb/sec Signal Bandwidth Auto Scale Symmetric	d Losses Model Specs Antenna Modulator Filter Additional Gains and Losses Jation Type Use Butterworth

Steps to generating a Link Budget Report

We will concentrate on an examination of the E_b/N_0 and the Bit Error Rate (BER). To check these values, you will create a Link Budget Report.

- Select *Receiver* () in the Object Browser \geq
- Click Access Tool (\triangleright
- Select the Transmitter of your simulation in the Associated Objects panel
- Click the *Report & GraphManager...button*
- AAA Turn off the *Show Graphs option*
- If the *Installed Styles folder* not already expanded, expand it
- Select the *Link Budget Detailed* report
- \triangleright Click *Generate*...

<u>Note</u>: The link budget detailed report shows several more communication parameters than just the simple link budget report. But, in our case, the gain antenna, the atmosphere losses, the ionosphere losses, and etc, their value is not equal to zero dB. Hence, to generate the report for our simulation and to avoid the confusion, we will create our report style that will hide the column of gain antenna, atmosphere losses, ionosphere losses, and etc.

After finishing consulting this report, close the Link Budget report window, close the Report & GraphManager window, close the Access Panel

Basic Tr	ype: Complex Receiver Model			
Refraction Description	Model Specs Antenna System	Noise Temperature Filter	Additional Gains and Losses	
D2D Graphics	Frequency:	145 MHz	Auto Track	
3D Graphics	Antenna to LNA Line Loss:	1.85 dB		
Vector	LNA Gain:	20 dB		
Basic	LNA to Receiver Line Loss:	0.5 dB 🕎		
Comm Interference	Rain Model			
Sun Temporal	Outage Percent: 0.100	*		
Advanced Zones	Link Margin			
····· Targeting ····· Vector	Enable			
Special Plugins	Threshold: 14.35 c	iB 📦		
			J	
				1
Model Specs Antenna System Noise Tempera	ture Filter Additional Gains and Losses	Model Specs Antenna Sys	stem Noise Temperature Filter Additional Gains a	and Losses
Model Searce Astrona System Noise Tempera	ature Eiter Additional Caine and Losse	Identifier	Gain Add	
Constant 681.13K		Antenna polarization lo Antenna pointing loss a Antenna gain	Jss at IX -0.23 dB Remove at RX -0.15 dB Remove 13.35 dB Remove Remove	
Compute		Atmosphere losses lonosphere losses Rain losses	-2.1 dB -0.8 dB	
Model Specs Antenna System Noise Temper	rature Filter Additional Gains and Losse	Total Transmission Line	ie Losses -1.85 dB	
Receiver Bandwidth Bandwidth: 0.002 MHz	💭 🔽 Auto Scale	Total Gains/Losses:	1.16 dB	
	Figure A.III.5: Add	ling a Receiver in STK		

- Steps to create a new Report Style of Link Budget (Figure A.III.6):
 - Select Receiver (Select Browser) in the Object Browser
 - Click Access Tool (
 - Select the selected Transmitter of your simulation in the Associated Objects panel
 - Click the Report & GraphManager...button
 - Turn off the Show Graphs option

- Select My Styles folder, click on icon to create a new report style and enter the name of the new report style for example KKBER
- Select *Content page*, type "*Link information*" below the *Data Providers* and click *Filter button*
- Select the "*Time*", "*Xmtr Power*", etc of the *Link information data* and click to the lists below the *Report Contents* as shown in Figure A.III.6
- Click on *Units...* button to set the unit of the parameter
- Click *OK* to apply and close
- Select the KKBER report
- Click *Generate*...
- After finishing consulting this report, close the Link Budget report window, close the Report & GraphManager window, close the Access Panel

- Steps to add a minimum *Link Budget* constraint on the receiver:

A.III.2 <u>3D and 2D graphics of the simulation scenarios</u>

A.III.3 Access and AER results

A. Elliptical LEO orbit

Min Range

Max Range

Mean Range

OUFTI1-To-Liege																		
	Acc	ess		Sta	art T	ime	(UTCG)			s	top T	ime	(UT	CG)		Durati	on (min)
		1	7	 / Jul	2011	10:0	00:00.	000	-	 7 Jul	2011	10:	09:	18.	569		9.30	9
		2	7	Jul	2011	11:4	16:37.	473	-	7 Jul	2011	11:	54:	53.3	176		8.26	2
		3	7	Jul	2011	13:3	34:41.	441	-	7 Jul	2011	13:	42:	46.8	838		8.09	0
		4	7	Jul	2011	15:2	20:22.	873	-	7 Jul	2011	15:	33:	18.3	326		12.92	4
		5	7	Jul	2011	17:0)5:17.	944	-	7 Jul	2011	17:	22:	09.4	481		16.85	9
		6	7	Jul	2011	18:5	50:28.	353	-	7 Jul	2011	19:	07:2	24.	975		16.94	4
		7	7	Jul	2011	20:3	37:28.	949	7	7 Jul	2011	20:	47:	21.8	865		9.88	2
		8	8	3 Jul	2011	08:1	L7:08.	892	8	3 Jul	2011	08:	27:	05.3	187		9.93	8
Global Statistics	5																	
Min Duration	-	3	7	Jul	2011	13:3	34:41.	441	-	7 Jul	2011	13:	42:	46.8	838		8.09	0
Max Duration		6	7	/ Jul	2011	18:5	50:28.	353	7	7 Jul	2011	19:	07:2	24.9	975		16.94	4
Mean Duration																	11.52	6
Total Duration																	92.20	8
Liege-To-OUFTI1																		
Global Statistics	5																	
Min Elevation	8 J	ul 20	011	08:2	7:05.	187			37.1	L35				0.0	00	2608.55	0744	
Max Elevation	7 J	ul 2	011	17:12	2:23.	133			55.5	572			5	0.8'	74	1108.19	5698	
Mean Elevation													1	1.0	14			
1																		

a. Access and AER for Satellite-Liege link

b. Access and AER for Satellite-Toulouse link

306.739

179.489

29.162

0.000

800.860447

4169.070940

2374.614227

7 Jul 2011 10:03:23.909

7 Jul 2011 19:07:24.975

OUFTI1-To-Toulouse	2			
	-			
	Access	Start Time (UTCG)	Stop Time (UTCG)	Duration (min)
	1	7 Jul 2011 10:00:00.000	7 Jul 2011 10:06:47.835	6.797
	2	7 Jul 2011 11:48:19.414	7 Jul 2011 11:49:26.725	1.122
	3	7 Jul 2011 15:23:02.393	7 Jul 2011 15:31:04.750	8.039
	4	7 Jul 2011 17:06:47.185	7 Jul 2011 17:23:03.097	16.265
	5	7 Jul 2011 18:51:36.327	7 Jul 2011 19:09:53.418	18.285
	6	7 Jul 2011 20:38:13.612	7 Jul 2011 20:51:15.410	13.030
	7	8 Jul 2011 08:15:16.542	8 Jul 2011 08:24:45.595	9.484
Global Statistics				
Min Duration	2	7 Jul 2011 11:48:19.414	7 Jul 2011 11:49:26.725	1.122
Max Duration	5	7 Jul 2011 18:51:36.327	7 Jul 2011 19:09:53.418	18.285
Mean Duration				10.432
Total Duration				73.022

Toulouse-To-OUFTI	1 -													
Global Statistics														
Min Elevation	7 J	Jul 2011	20:51:15.398	218.720	0.000	4204.463949								
Max Elevation	7 J	Jul 2011	18:59:22.616	248.686	61.429	1137.549575								
Mean Elevation					11.528									
Min Range	8 J	Jul 2011	08:19:38.647	108.201	23.135	851.403463								
Max Range	7 J	Jul 2011	19:09:53.403	168.426	0.000	4268.751618								
Mean Range						2531.463343								

From the chapter IV in section IV.2.3, the orbit period of elliptical LEO orbit is about 103 minutes for a pass. As a result, the satellite orbits the earth about 14 ($24 \times 60/103$) passes per day. For these 14 passes per day, however, the satellite can access

- Liege facility 8 accesses per day with the minimum access duration 8.090 minutes, maximum access duration 16.944 minutes and total access duration 92.208 minutes per day.
- and Toulouse facility 7 accesses per day with the minimum access duration 1.122 minutes, maximum access duration 18.285 minutes and total access duration 73.022 minutes per day as shown in the text box above.

Hence, the total duration of access from OUFTI-1 satellite to Liege facility is about 19.18 minutes bigger/better than the one from OUFTI-1 satellite to Toulouse facility.

The mean range between Liege facility and OUFTI-1 satellite is about 2374.61 km, while the one between Toulouse facility and OUFTI-1 satellite is about 2531.46 km. Hence, the free space path losses between OUFTI-1 satellite and Liege facility is smaller than the one between OUFTI-1 and Toulouse facility, so that the communication between OUFTI-1 and Toulouse facility will averagely worst than the one between OUFTI-1 and Liege facility.

B. Elliptical VLEO orbit

a. Access and AER for Satellite-Liege link

	Acc	ess	3		Sta	rt T	ime	(UT	'CG)				St	top T	ime	(t	JTCG)	D	uratio	on (min)
		1	L	7 J	Jul	2011	11	:34:	53.	508		7	Jul	2011	11	: 42	2:06	.455			7	.21
		2	2	7 J	u l	2011	13	:09:	51.	496		7.	Jul	2011	13	:18	3:24	.367			8	.548
		З	3	7 J	u l	2011	14	:45:	47.	757		7.	Jul	2011	14	: 53	3:51	.052			8	.05!
		4	1	7 J	Jul	2011	16	:23:	04.	186		7.	Jul	2011	16	:27	1:31	.491			4	. 45!
Global Statistics																						
Min Duration		4	1	7 J	ul	2011	16	:23:	04.	186		7.	Jul	2011	16	:27	1:31	.491			4	. 45!
Max Duration		2	2	7 J	Jul	2011	13	:09:	51.	496		7.	Jul	2011	13	:18	3:24	.367			8	. 548
Mean Duration																					7	.068
Total Duration																					28	. 274
Liege-To-OUFTI1																						
Global Statistics																						
Min Elevation	7 J	ul	2011	14	:53	:51.	052			1	L41.	39	в				Ο.	000	22	20.988	8494	
Max Elevation	7 J	ul	2011	13	3:14	:07.	783			1	L76.	55	2				11.	637	12	84.078	3572	
Mean Elevation																	з.	891				
Min Range	7 J	ul	2011	13	3:14	:07.	630			1	L76.	60	3				11.	637	12	84.078	8111	
Max Range	7 J	ul	2011	14	:45	5:47.	757			2	245.	03	5				Ο.	000	22	26.92	480	
Mean Range																			18	65 169	284	

b. Access and AEF	R for Satellite	-Toulouse link
-------------------	-----------------	----------------

OUFTI1-To-Toulous	e																							
	-																							
	Ac	cess	3		Sta	rt T	ime	(טי	rcg)	_		S	top I	Cin	ne (1	UTC	G)		D	ura	tio	on (min)
		1	L '	7.	Jul	2011	10	:00	: 00	. 000)	7	Jul	2011	1	L0:0	4:0	3.9	912				4	.065
		2	2 '	7.	Jul	2011	11	: 32	:25	. 878	3	7	Jul	2011	L 1	1:4	1:4	16.2	274				9	.340
		3	3 '	7.	Jul	2011	13	:08	:10	. 381	-	7	Jul	2011	L 1	13:1	8:1	6.2	204				10	.097
		4	1 '	7.	Jul	2011	14	:44	:27	.783	3	7	Jul	2011	1	4:5	4:2	29.5	521				10	.029
		5	5 '	7.	Jul	2011	16	:21	:04	. 371	-	7	Jul	2011	L 1	6:2	9:5	57.9	959				8	. 893
		e	5 '	7.	Jul	2011	18	:00	:10	. 337	,	7	Jul	2011	L 1	18:0	2:0	94.7	738				1	.907
Global Statistics																								
Min Duration		6	5	7.	Jul	2011	18	:00	:10	. 337	,	7	Jul	2011	1	18:0	2:0)4.7	738				1	. 907
Max Duration		3	3 '	7.	Jul	2011	13	:08	:10	. 381	-	7	Jul	2011	1	13:1	8:1	6.2	204				10	.097
Mean Duration																							7	.388
Total Duration																							44	.331
Toulouse-To-OUFTI:	1																							
	-																							
Global Statistics																								
Min Elevation	7	Jul	2011	1	3:18	:16.	204				95	. 47	3				C	0.00	00	22	26.	885	293	1
Max Elevation	7	Jul	2011	1:	3:13	:12.	886	;			173	. 66	4				39	9.00	08	5	75.	540	323	1
Mean Elevation																	ε	3.82	24					
Min Range	7	Jul	2011	1:	3:13	:12.	828				173	. 71	8				39	9.00	08	5	75.	540	178	
Max Range	7	Jul	2011	1:	1:41	:46.	274				92	. 21	7				C	0.00	00	22	27.	246	824	
Mean Range																				16	14.	831	731	

From the chapter IV in section IV.2.3, the orbit period of elliptical VLEO orbit is about 91.93 minutes for a pass. As a result, the satellite orbits the earth about 16 $(24 \times 60/91.93)$ passes per day. For these 16 passes per day, however, the satellite can access

- Liege facility 4 accesses per day with the minimum access duration 4.455 minutes, maximum access duration 8.548 minutes and total access duration 28.274 minutes per day.
- and Toulouse facility 6 accesses per day with the minimum access duration 1.907 minutes, maximum access duration 10.097 minutes and total access duration 44.331 minutes per day as shown in the text box above.

Hence, the total duration of access from OUFTI-1 satellite to Liege facility is about 16.06 minutes smaller/worst than the one from OUFTI-1 satellite to Toulouse facility.

The mean range between Liege facility and OUFTI-1 satellite is about 1865.17 km, while the one between Toulouse facility and OUFTI-1 satellite is about 1614.83 km. Hence, the free space path losses between OUFTI-1 satellite and Liege facility is bigger than the one between OUFTI-1 and Toulouse facility, so that the communication between OUFTI-1 and Toulouse facility will averagely better than the one between OUFTI-1 and Liege facility.

C. Elliptical MEO "Molniya" orbit

OUFTI1-To-Liege																							
	Ac	ces	s		Sta	art T	ime	(UI	CG)			st	сор Т	ime) e	JTCG	;)		Durat	cio	n (m	in)
			1	7	Jul	2011	10:	00:	00	.000	7	J1	ul	2011	10):32	2:25	5.55	0			32.	426
		:	2 3	7 8	Jul Jul	2011 2011	22: 09:	15: 50:	36 54	.168 .212	8 8	Jı Jı	ul ul	2011 2011	00 10):26):00	5:31):00	99:	1 0			130. 9.	930 096
Global Statistics																							
Min Duration		:	3	8	Jul	2011	09:	50:	54	. 212	ε	J	ul	2011	10	0:00	00:00	.00	0			9.	096
Max Duration		:	2	7	Jul	2011	22:	15:	36	.168	8	J	ul	2011	00):26	5:31	. 993	1			130.	930
Mean Duration																						57.	484
Total Duration																						172.	453
Liege-To-OUFTI1																							
Global Statistics																							
			Time	e (UTC	G)			Az	imutł	n (de	eg)		Ele	vat	ior	ı (d	leg)		Range	∍ (km)	
Min Elevation	8	Jul	2011	0	0:2	6:31.	991			2	256.4	04					0.	000		33573	. 39	 1555	
Max Elevation	8	Jul	2011	. 0	9:5	9:13.4	424			1	131.7	16					87.	063		1692	84	5094	
Mean Elevation																	15.	613					
Min Range	7	Jul	2011	. 1	0:02	2:47.	804			2	209.9	42					75.	461		1646	65	5623	
Max Range	8	Jul	2011	. 0	0:2	6:31.	991			2	256.4	04					0.	000		33573	. 39	1555	
Mean Range																				17604	45	4150	

a. Access and AER for Satellite-Liege link

b. Access and AER for Satellite-Toulouse

OUFTI1-To-Toulous	e -														
	Acce	35	St	art T	ime	(UT	CG)			S	top T	ime (UT	CG)	Durat	ion (min)
		1	7 Jul	2011	10:	00:0	00.00	0	7	Jul	2011	10:23:	10.605		23.177
		2	7 Jul	2011	22:	17:!	52.15	2	8	Jul	2011	00:48:	20.986		150.481
		3	8 Jul	2011	09:	48:	55.43	8	8	Jul	2011	10:00:	00.000		11.076
Global Statistics															
Min Duration		3	8 Jul	2011	09:	48:	55.43	8	8	Jul	2011	10:00:	00.000		11.076
Max Duration		2	7 Jul	2011	22:	17:	52.15	2	8	Jul	2011	00:48:	20.986		150.481
Mean Duration															61.578
Total Duration															184.733
Toulouse-To-OUFTI	1 -														
Global Statistics															
		Time	(UTC	G)		1	Azimu	th	(deg	r)	Ele	vation	(deg)	Range	(km)
Min Elevation	7 Ju	L 2011	10:2	3:10.	605			4	1.31	.9			0.000	10063.	034449
Max Elevation	7 Ju	L 2011	10:0	1:39.	598			30	9.82	21		8	0.097	1512.	258637
Mean Elevation												1	5.903		
Min Range	7 Ju	L 2011	10:0	1:08.	688			26	2.20	2		7	5.480	1488.	999031
Max Range	8 Ju	L 2011	00:4	8:20.	986			25	4.63	80			0.000	36008.	063340
Mean Range														19709.	426453

From the chapter IV in section IV.2.3, the orbit period of elliptical MEO "Molniya" orbit is about 717.79 minutes for a pass. As a result, the satellite orbits the earth about 2 ($24 \times 60/717.79$) passes per day. For these 2 passes per day, however, the satellite can access

- Liege facility 3 accesses per day with the minimum access duration 9.096 minutes, maximum access duration 130.930 minutes and total access duration 172.453 minutes per day.
- and Toulouse facility 3 accesses per day with the minimum access duration 11.076 minutes, maximum access duration 150.481 minutes and total access duration 184.733 minutes per day as shown in the text box above.

Hence, the total duration of access from OUFTI-1 satellite to Liege facility is about 12.28 minutes smaller/worst than the one from OUFTI-1 satellite to Toulouse facility.

The mean range between Liege facility and OUFTI-1 satellite is about 17604.45 km, while the one between Toulouse facility and OUFTI-1 satellite is about 19709.43 km. Hence, the free space path losses between OUFTI-1 satellite and Liege facility is smaller than the one between OUFTI-1 and Toulouse facility, so that the communication between OUFTI-1 and Toulouse facility will averagely worst than the one between OUFTI-1 and Liege facility.

D. Elliptical MEO "Tundra" orbit

a.	Access and AER for Satellite-Liege link

OUFTI1-To-Liege																			
	Ac	ces	s		Sta	art T	ime	• (U	тсо	3)			s	top I	ime (UTCG	;)	Durat	ion (mi	in)
		:	1	7	Jul	2011	12	2:00	:00	0.00	00	7	Jul	2011	23:54:55	5.832		714.9	931
		:	2	8,	Jul	2011	08	8:43	:56	6.99	90	8	Jul	2011	12:00:00	0.000		196.0)50
Global Statistics																			
Min Duration		:	2	8 .	Jul	2011	08	3:43	:56	6.99	90	8	Jul	2011	12:00:00	0.000		196.0)50
Max Duration			1	7.	Jul	2011	12	2:00	:00	0.00	00	7	Jul	2011	23:54:55	5.832		714.9	931
Mean Duration																		455.4	490
Total Duration																		910.9	981
Liege-To-OUFTI1																			
Global Statistics																			
			Time	(1	UTCO	G)		_	Az	zimu	ith	(de	g)	Ele	vation (d	leg)	Range	(km)	
Min Elevation	7	Jul	2011	2	3:54	4:55.	832	2			19	4.8	81		0.	000	52246.	386292	
Max Elevation	7	Jul	2011	1:	2:42	2:29.	696	5			30	2.4	08		85.	475	26296.	370590	
Mean Elevation															39.	970			
Min Range	8	Jul	2011	1:	1:53	3:28.	475	5			21	7.4	49		71.	536	25689.	673303	
Max Range	7	Jul	2011	2	3:54	4:55.	832	2			19	4.8	81		0.	000	52246.	386292	
Mean Range																	37868.	385299	

|--|

OUFTI1-To-Toulous	e -			
	Access	Start Time (UTCG)	Stop Time (UTCG)	Duration (min)
	1 2	7 Jul 2011 12:00:00.000 8 Jul 2011 08:17:00.162	8 Jul 2011 00:44:10.145 8 Jul 2011 12:00:00.000	764.169 222.997
Global Statistics				
Min Duration	2	8 Jul 2011 08:17:00.162	8 Jul 2011 12:00:00.000	222.997
Max Duration	1	7 Jul 2011 12:00:00.000	8 Jul 2011 00:44:10.145	764.169
Mean Duration Total Duration				493.583 987.166

Toulouse-To-OUFTI1										
Global Statistics										
		Time	(UTCG)	Azimuth (deg)	Elevation (deg)	Range (km)				
Min Elevation	8 J1	ul 2011	00:44:10.145	196.243	0.000	51884.670582				
Max Elevation	7 J1	ul 2011	12:16:29.325	289.010	84.771	25729.364885				
Mean Elevation					38.899					
Min Range	8 J1	ul 2011	11:43:35.430	217.160	76.766	25463.743009				
Max Range	8 J1	ul 2011	00:44:10.145	196.243	0.000	51884.670582				
Mean Range						38291.898706				

From the chapter IV in section IV.2.3, the orbit period of elliptical MEO "Tundra" orbit is about 1436.04 minutes for a pass. As a result, the satellite orbits the earth about 1 ($24 \times 60/1436.04$) pass per day. For these 1 pass per day, however, the satellite can access

- Liege facility 2 accesses per day with the minimum access duration 196.050 minutes, maximum access duration 714.931 minutes and total access duration 910.981 minutes per day.
- and Toulouse facility 2 accesses per day with the minimum access duration 222.997 minutes, maximum access duration 764.169 minutes and total access duration 987.166 minutes per day as shown in the text box above.

Hence, the total duration of access from OUFTI-1 satellite to Liege facility is about 76.18 minutes smaller/worst than the one from OUFTI-1 satellite to Toulouse facility.

The mean range between Liege facility and OUFTI-1 satellite is about 37868.39 km, while the one between Toulouse facility and OUFTI-1 satellite is about 38291.90 km. Hence, the free space path losses between OUFTI-1 satellite and Liege facility is smaller than the one between OUFTI-1 and Toulouse facility, so that the communication between OUFTI-1 and Toulouse facility will averagely worst than the one between OUFTI-1 and Liege facility.

E. Circular LEO "inclined" orbit

a.	Access	and	AER	for	Satellite	-Liege	link
----	--------	-----	-----	-----	-----------	--------	------

Liege-To-OUFTI1							
Global Statistic	s						
	-		Time	(UTCG)	Azimuth (deg)	Elevation (deg)	Range (km)
Min Elevation	7	Jul	2011	10:10:33.440	24.481	-0.000	2998.598077
Max Elevation	8	Jul	2011	08:51:43.036	115.441	78.393	675.124510
Mean Elevation						11.395	
Min Range	8	Jul	2011	08:51:42.764	116.287	78.392	675.121807
Max Range	7	Jul	2011	11:50:20.712	21.699	0.000	2998.981415
Mean Range							2206.952610

OUFTI1-To-Liege

	Access	Start Time (UTCG)	Stop Time (UTCG)	Duration (min)
	1	7 Jul 2011 10:00:00.00	0 7 Jul 2011 10:10:33.440	10.557
	2	7 Jul 2011 11:39:40.71	3 7 Jul 2011 11:50:20.712	10.667
	3	7 Jul 2011 13:23:27.53	5 7 Jul 2011 13:31:21.675	7.902
	4	7 Jul 2011 15:04:54.64	8 7 Jul 2011 15:14:56.410	10.029
	5	7 Jul 2011 16:44:46.81	0 7 Jul 2011 16:57:59.556	13.212
	6	7 Jul 2011 18:24:36.77	9 7 Jul 2011 18:38:15.344	13.643
	7	7 Jul 2011 20:05:47.98	5 7 Jul 2011 20:14:24.149	8.603
	8	8 Jul 2011 07:07:26.62	0 8 Jul 2011 07:18:05.934	10.655
	9	8 Jul 2011 08:44:49.16	5 8 Jul 2011 08:58:42.307	13.886
Global Statistics				
Min Duration	3	7 Jul 2011 13:23:27.53	5 7 Jul 2011 13:31:21.675	7.902
Max Duration	9	8 Jul 2011 08:44:49.16	5 8 Jul 2011 08:58:42.307	13.886
Mean Duration				11.017
Total Duration				99.155

OUFTI1-To-Toulous	se																					
	 A	cces	s		Sta	art T	ime	נטז)	CG)			s	top 1	'ime	(טי	rcg)		Dura	ti	on	(min)
	_		- 1	 7	Jul	2011	10:	00:	00.0	00	- 7	Jul	2011	10	:08	:15.0	 658				8.26	-
		:	2	7	Jul	2011	11:	39:	21.3	50	7	Jul	2011	. 11	:46	:50.9	959				7.49	3
			3	7	Jul	2011	16:	46:	49.0	35	7	Jul	2011	. 16	: 57	:57.3	196			1	1.13	6
			4	7	Jul	2011	18:	26:	02.1	91	7	Jul	2011	18	: 39	: 55.3	383			1	3.88	7
			5	7	Jul	2011	20:	06:	49.5	34	7	Jul	2011	20	:17	:19.4	428			1	0.49	8
			6	8	Jul	2011	07:	05:	53.4	80	8	Jul	2011	07	:15	:27.1	138			_	9.56	1
			7	8	Jul	2011	08:	42:	41.4	37	8	Jul	2011	08	:56	:33.3	354			1	3.86	5
Global Statistics	5																					
Min Duration	-	:	2	7	Jul	2011	11:	39:	21.3	50	7	Jul	2011	. 11	:46	:50.9	959				7.49	3
Max Duration			4	7	Jul	2011	18:	26:	02.1	91	7	Jul	2011	. 18	: 39	:55.3	383			1	3.88	7
Mean Duration																				1	0.67	2
Total Duration																				7	4.70	1
Toulouse-To-OUFT1	[1																					
Global Statistics	3																					
	-		Time	. (UTCO	5)			Azim	uth	(de	g)	Ele	vat:	ion	(dec	g)	Range	э	(km	l)	
Min Elevation	7	Jul	2011	2	20:06	5:49.	534			31	13.6	36				0.00	00	2988.5	51!	583	1	
Max Elevation	8	Jul	2011	0	08:49	9:34.	554			11	11.7	39			8	81.49	94	666.0	658	318	4	
Mean Elevation																12.6	13					
Min Range	8	Jul	2011	. ()8:49	9:34.	270			11	12.9	55			8	81.49	93	666.0	65!	520	3	
Max Range	7	Jul	2011	1	1:46	5:50.	959			35	58.3	03				0.00	00	2995.3	15:	108	1	

Access and AER for Satellite-Toulouse link

b.

From the chapter IV in section IV.2.3, the orbit period of circular LEO "Inclined" orbit is about 97.73 minutes for a pass. As a result, the satellite orbits the earth about 15 $(24 \times 60/97.73)$ passes per day. For these 15 passes per day, however, the satellite can access

- Liege facility 9 accesses per day with the minimum access duration 7.902 minutes, maximum access duration 13.886 minutes and total access duration 99.155 minutes per day.

2185.873205

- and Toulouse facility 7 accesses per day with the minimum access duration 7.493 minutes, maximum access duration 13.887 minutes and total access duration 74.701 minutes per day as shown in the text box above.

Hence, the total duration of access from OUFTI-1 satellite to Liege facility is about 24.45 minutes bigger/better than the one from OUFTI-1 satellite to Toulouse facility.

The mean range between Liege facility and OUFTI-1 satellite is about 2206.95 km, while the one between Toulouse facility and OUFTI-1 satellite is about 2185.87 km. Hence, the free space path losses between OUFTI-1 satellite and Liege facility is bigger than the one between OUFTI-1 and Toulouse facility, so that the communication between OUFTI-1 and Toulouse facility will averagely better than the one between OUFTI-1 and Liege facility.

F. Circular LEO "polar" orbit

Mean Range

a. Access and AER for Satellite-Liege link

	Access	St	art T	ime (UTCG)		S	top T	ime (UTCO	;)	Duration	(min)
	1	7 Jul	2011	10:00:00.000	- 7	Jul	2011	10:06:25	5.238		6.421
	2	7 Jul	2011	16:51:00.151	7	Jul	2011	16:53:58	3.371		2.970
	3	7 Jul	2011	18:25:38.472	7	Jul	2011	18:38:17	.613		12.652
	4	7 Jul	2011	20:03:15.004	7	Jul	2011	20:16:31	. 392		13.273
	5	7 Jul	2011	21:42:15.658	7	Jul	2011	21:50:33	3.051		8.290
	6	3 Jul	2011	05:32:24.630	8	Jul	2011	05:41:48	8.049		9.390
	7	3 Jul	2011	07:07:04.207	8	Jul	2011	07:20:32	2.449		13.471
	8	3 Jul	2011	08:45:49.057	8	Jul	2011	08:57:59	9.715		12.178
Global Statistics											
Min Duration	2	7 Jul	2011	16:51:00.151	7	Jul	2011	16:53:58	3.371		2.970
Max Duration	7	3 Jul	2011	07:07:04.207	8	Jul	2011	07:20:32	2.449		13.471
Mean Duration											9.831
Total Duration											78.645

Liege-To-OUFTI1						
Global Statistic	s					
	-	Time	(UTCG)	Azimuth (deg)	Elevation (deg)	Range (km)
Min Elevation	7 Jul	2011	21:50:33.051	260.558	0.000	2976.031658
Max Elevation	8 Jul	2011	07:13:45.617	83.402	57.652	770.403948
Mean Elevation					10.259	
Min Range	8 Jul	2011	07:13:45.236	83.801	57.651	770.399088
Max Range	8 Jul	2011	07:20:32.449	2.135	0.000	3000.458618
Mean Range						2258.115130

b. Access and AER for Satellite-Toulouse link

Toulouse-To-OUFTI1	L						
	-						
Global Statistics							
			Time	(UTCG)	Azimuth (deg)	Elevation (deg)	Range (km)
Min Elevation	7	Jul	2011	20:05:11.836	357.305	0.000	2995.151370
Max Elevation	7	Jul	2011	20:11:57.633	276.150	56.743	774.233813
Mean Elevation						10.408	
Min Range	7	Jul	2011	20:11:58.026	275.750	56.742	774.228658
Max Range	7	Jul	2011	20:05:11.836	357.305	0.000	2995.151370
Mean Range							2236.930788

OUFTI1-To-Toulouse

	Access	Start Time (UTCG)	Stop Time (UTCG)	Duration (min)
	1	7 Jul 2011 10:00:00.000	7 Jul 2011 10:03:51.197	3.853
	2	7 Jul 2011 18:28:06.465	7 Jul 2011 18:39:32.846	11.440
	3	7 Jul 2011 20:05:11.836	7 Jul 2011 20:18:37.952	13.435
	4	7 Jul 2011 21:44:39.765	7 Jul 2011 21:52:26.497	7.779
	5	8 Jul 2011 05:33:39.124	8 Jul 2011 05:37:40.825	4.028
	6	8 Jul 2011 07:05:29.235	8 Jul 2011 07:18:28.486	12.988
	7	8 Jul 2011 08:43:30.538	8 Jul 2011 08:56:01.003	12.508
Global Statistics				
Min Duration	1	7 Jul 2011 10:00:00.000	7 Jul 2011 10:03:51.197	3.853
Max Duration	3	7 Jul 2011 20:05:11.836	7 Jul 2011 20:18:37.952	13.435
Mean Duration				9.433
Total Duration				66.031

From the chapter IV in section IV.2.3, the orbit period of circular LEO "Polar" orbit is about 97.73 minutes for a pass. As a result, the satellite orbits the earth about 15 $(24 \times 60/97.73)$ passes per day. For these 15 passes per day, however, the satellite can access

- Liege facility 8 accesses per day with the minimum access duration 2.970 minutes, maximum access duration 13.471 minutes and total access duration 78.645 minutes per day.
- and Toulouse facility 7 accesses per day with the minimum access duration 3.853 minutes, maximum access duration 13.435 minutes and total access duration 66.031 minutes per day as shown in the text box above.

Hence, the total duration of access from OUFTI-1 satellite to Liege facility is about 12.61 minutes bigger/better than the one from OUFTI-1 satellite to Toulouse facility.

The mean range between Liege facility and OUFTI-1 satellite is about 2258.16 km, while the one between Toulouse facility and OUFTI-1 satellite is about 2236.93 km. Hence, the free space path losses between OUFTI-1 satellite and Liege facility is bigger than the one between OUFTI-1 and Toulouse facility, so that the communication between OUFTI-1 and Toulouse facility will averagely better than the one between OUFTI-1 and Liege facility.

A.III.4 <u>C code for finding the optimal satellite constellation for a continuous whole Earth</u> <u>coverage</u>

```
#include <math.h>
#include <stdio.h>
#include <conio.h>
int P, N, N min, N max, P min, P max, testPN;
int N optimal, P optimal, count;
char ch;
main()
ł
LB1:
clrscr();
printf("\n\n ***** Testing Satellite Constellation, P and N **** ");
printf("\n\n ***** Constellation for continuous whole Earth coverage **** ");
printf("\n\n + Please input the minimum number of satellite planes, P min=");
scanf("%d",&P min);
printf("n + Please input the maximum number of satellite planes, P max= ");
scanf("%d",&P max);
printf("\n + Please input the maximum number of satellites per plane, N max= ");
scanf("%d",&N max);
printf("\n + Please input the minimum number of satellites per plane, N min= ");
scanf("%d",&N min);
P=P max:
N=N min;
printf("\n\n -----");
while (P>=P min&&N<=N max)
printf("\n\n -> Testing [ P= %d, N= %d ] ", P, N);
printf("\n\n + Testing satellite constellation %d planes with %d satellites per plane.", P, N);
printf("\n\n + If test is possible, insert value 1 otherwise insert value 0, testPN= ");
scanf("%d",&testPN);
       if (testPN==1)
       ł
        N_optimal= N;
        P optimal= P;
        P=P-1;
        N max=floor(P optimal*N optimal/P);
        N=N max;
        goto LB2;
       else if (testPN==0)
       ł
        N=N+1;
        if (N<=N max)
        continue;
        else
        printf("\n\n ------ END Testing ------ ");
        printf("\n\n >>> No Periods of Global Coverage Exist!");
        goto LB3;
```

```
}
}
LB2:
while (P>=P min&&N>=N min)
{
 printf("\n\n -> Testing [ P= %d, N= %d ] ", P, N);
 printf("\n\n + Testing satellite constellation %d planes with %d satellites per plane.", P, N);
printf("\n\n + If test is possible, insert value 1 otherwise insert value 0, testPN= ");
scanf("%d",&testPN);
 if (testPN==1)
 {
   N optimal = N;
   P optimal = P;
   N=N-1;
   if (N>=N min)
        continue;
   else
        P=P-1;
        N max=floor(P optimal*N optimal/P);
        N=N_max;
        continue;
 }
 else if(testPN==0)
 {
        P=P-1;
        N_max=floor(P_optimal*N_optimal/P);
        N=N max;
        continue;
 }
}
printf("\n\n ------ END Testing ------ ");
printf("\n\n >>> Hence, the optimal constellation is %d planes with %d satellites per plane, "
,P optimal,N optimal);
printf("\n\n and the minimum total number of satellites is equal to %d.", P optimal*N optimal);
printf("\n\n ------");
LB3:
printf("\n\n\n\n + Do you want to continue testing an other constellation?");
printf("\n (Press key <Y> for <Yes>,<other key> for <No> and <exit>)");
ch=getch();
        if (ch=='Y'||ch=='y')
        goto LB1;
        else
        while(1)
        break;
        return (0);
```

```
}
```

A.III.5 <u>C code for finding the optimal satellite constellation for a continuous coverage of a specific area</u>

```
#include <math.h>
#include <stdio.h>
#include <conio.h>
int P, N, N_min, N_max, P_min, P_max, testPN;
int N optimal, P optimal, count;
char ch;
main()
LB1:
clrscr();
printf("\n\n ******** Testing Satellite Constellation, P and N ******** ");
printf("\n\n ******** Constellation for continuous coverage ******** ");
printf("\n\n ********
                    for an area specific ********");
printf("\n\n + Please input the minimum number of satellite planes, P_min= ");
scanf("%d",&P_min);
printf("\n + Please input the maximum number of satellite planes, P_max= ");
scanf("%d",&P max);
printf("\n + Please input the maximum number of satellites per plane, N max=");
scanf("%d".&N max):
printf("\n + Please input the minimum number of satellites per plane, N min= ");
scanf("%d",&N min);
P=P max;
N=N max;
printf("\n\n ------");
while (P>=P min&&N>=N min)
ł
 printf("\n\n -> Testing [ P= %d, N= %d ] ", P, N);
 printf("\n\n + Testing satellite constellation %d planes with %d satellites per plane.", P, N);
 printf("\n\n + If test is possible, insert value 1 otherwise insert value 0, testPN= ");
 scanf("%d",&testPN);
 if (testPN==1)
 ł
  N optimal= N;
  P optimal = P;
  N=N-1;
  if (N \ge N \min)
       continue;
  else
       P=P-1:
       N max=floor(P optimal*N optimal/P);
       N=N max;
       continue;
 else if (testPN==0)
 ł
       P=P-1;
       N_max=floor(P_optimal*N_optimal/P);
       N=N max;
       continue;
```

} }

printf("\n\n ------ END Testing ------ "); printf("\n\n >>> Hence, the optimal constellation is %d planes wtih %d satellites per plane, " ,P_optimal,N_optimal); printf("\n\n and the minimum total number of satellites is equal to %d.", P_optimal*N_optimal); printf("\n\n ------");

printf("\n\n\n\n + Do you want to continue testing an other constellation?");
printf("\n (Press key <Y> for <Yes>,<other key> for <No> and <exit>)");
ch=getch();
 if (ch=='Y'||ch=='y')
 goto LB1;
 else
 while(1)
 break;
 return (0);
}

